

International Journal of Medical Science and Innovative Research (IJMSIR)**IJMSIR : A Medical Publication Hub****Available Online at: www.ijmsir.com****Volume – 11, Issue – 1, January – 2026, Page No. : 08 – 13****Diagnostic Accuracy of Ultrasonography and Contrast-Enhanced Computed Tomography in Intestinal Obstruction: Correlation with Intraoperative Findings – A Prospective Observational Study**

¹Dr. Alok Kumar Gupta, Postgraduate Resident, Department of Radiodiagnosis, Gandhi Medical College, Bhopal, Madhya Pradesh, India

²Dr. Lovely Kaushal, Professor & HOD, Department of Radiodiagnosis, Gandhi Medical College, Bhopal, Madhya Pradesh, India

³Dr. Vijay Kumar Verma, Associate Professor, Department of Radiodiagnosis, Gandhi Medical College, Bhopal, Madhya Pradesh, India

⁴Dr. Ankit Shah, Assistant Professor, Department of Radiodiagnosis, Gandhi Medical College, Bhopal, Madhya Pradesh, India

⁴Dr. Mahim Koshariya, Professor, Department of Surgery, Gandhi Medical College, Bhopal, Madhya Pradesh, India

⁵Dr. Arjun Jat, Department of Radiodiagnosis, Gandhi Medical College, Bhopal, Madhya Pradesh, India

Corresponding Author: Dr. Arjun Jat, Department of Radiodiagnosis, Gandhi Medical College, Bhopal, Madhya Pradesh, India.

Citation this Article: Dr. Alok Kumar Gupta, Dr. Lovely Kaushal, Dr. Vijay Kumar Verma, Dr. Ankit Shah, Dr. Mahim Koshariya, Dr. Arjun Jat, “Diagnostic Accuracy of Ultrasonography and Contrast-Enhanced Computed Tomography in Intestinal Obstruction: Correlation with Intraoperative Findings – A Prospective Observational Study”, IJMSIR - January – 2026, Vol – 11, Issue - 1, P. No. 08 – 13.

Type of Publication: Original Research Article

Conflicts of Interest: Nil

Abstract

Background: Intestinal obstruction is a common surgical emergency associated with significant morbidity and mortality. Imaging plays a critical role in early diagnosis, localization, and identification of the cause and complications.

Aim: To evaluate and compare the diagnostic efficacy of ultrasonography (USG) and contrast enhanced computed tomography (CECT) in clinically suspected intestinal obstruction, with correlation to intraoperative findings.

Materials and Methods: A prospective observational study was conducted on 100 patients with clinically suspected intestinal obstruction over a period of 18

months. All patients underwent ultrasonography followed by contrast-enhanced CT of the abdomen. Imaging findings were correlated with intraoperative findings, which served as the gold standard. Diagnostic performance parameters including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated.

Results: The most common age group affected was 16–30 years (33%), with male predominance (64%). CECT detected intestinal obstruction in 99% of cases, predominantly small bowel obstruction (94%), whereas USG detected obstruction in 54% of cases. Distal small bowel was the most common site of obstruction (61%).

CECT demonstrated significantly higher sensitivity, specificity, and overall diagnostic accuracy compared to ultrasonography in identifying the presence, level, and cause of obstruction.

Conclusion: CECT is superior to ultrasonography in the evaluation of intestinal obstruction and should be considered the imaging modality of choice in clinically suspected cases.

Keywords: Intestinal obstruction, Ultrasonography, Contrast-enhanced CT, Diagnostic accuracy, Intraoperative correlation

Introduction

Intestinal obstruction represents a frequent and potentially life-threatening surgical emergency. Prompt diagnosis is essential to prevent complications such as strangulation, ischemia, perforation, and peritonitis. While clinical examination provides initial suspicion, imaging plays a decisive role in confirmation and management planning. Ultrasonography is non-invasive and radiation-free but operator-dependent, whereas contrast-enhanced computed tomography offers comprehensive evaluation of bowel anatomy, level, cause, and complications. This study compares the diagnostic efficacy of these two modalities using intraoperative findings as the reference standard.

Aims and Objectives

1. To evaluate the diagnostic efficacy of ultrasonography and CECT abdomen in clinically suspected intestinal obstruction.
2. To compare USG and CECT findings with intraoperative findings as the gold standard.

Materials and Methods

Study Design: Prospective observational study.

Study Period: May 2023 – October 2024.

Study Setting: Department of Radiodiagnosis, Gandhi Medical College, Bhopal.

Study Population: 100 patients with clinical suspicion of intestinal obstruction.

Inclusion Criteria

- Patients with clinical features of intestinal obstruction
- Informed consent obtained

Exclusion Criteria

- History of recent abdominal trauma
- Evidence of perforation or pneumatoisis
- Pregnancy
- Known contrast allergy or renal dysfunction

Imaging Protocol

All patients underwent abdominal ultrasonography followed by contrast-enhanced CT scan. CT was performed using intravenous contrast (1–1.5 ml/kg) with bolus tracking.

Statistical Analysis

Data were analyzed using SPSS v22. Diagnostic accuracy parameters were calculated. Chi square test was applied, and $p < 0.05$ was considered statistically significant.

Ethical Considerations

Ethical clearance was obtained from the Institutional Ethics Committee. Written informed consent was taken from all participants.

Results

Observation and Results

Table 1: Distribution of patients according to the age group and gender

Age Group	Gender		Total	Chi square value P value
	Male	Female		
	N (%)	N (%)	N (%)	
≤15	11 (73.3)	4 (26.7)	15 (100.0)	18.833 0.001
16-30	12 (36.4)	21 (63.6)	33 (100.0)	
31-45	8 (61.5)	5 (38.5)	13 (100.0)	

46-60	19 (82.6)	4 (17.4)	23 (100.0)	
≥61	14 (87.5)	2 (12.5)	16 (100.0)	
Total	64 (64.0)	36 (36.0)	100 (100.0)	

Table 2: Distribution of patients on the basis of clinical features

S No	Clinical features	No of Patients	Percentage
1	Abdominal pain and distension	36	36.0
2	Abdominal pain and vomiting	22	22.0
3	Unable to pass faeces and flatus	12	12.0
4	Unable to pass faeces and flatus and abdominal pain	30	30.0
Total		100	100

Table 3: Distribution of patients based on the type of obstruction as evidenced by USG

S No	Type of obstruction in USG	No of Patients	Percentage
1	Normal	46	46.0
2	Small bowel obstruction	54	54.0
Total		100	100.0

Table 4: Distribution of patients based on the CECT findings

S No	Type of obstruction in CECT	No of Patients	Percentage
1	Small bowel obstruction	94	94.0
2	Large bowel obstruction	1	1.0
3	Small bowel and large bowel obstruction	5	5.0
Total		100	100.0

Table 5: Distribution of patients according to the level of obstruction on USG

S No	Level of obstruction in USG	No of Patients	Percentage
1	Normal	96	96.0
2	Terminal ileum, IC junction	4	4.0
Total		100	100.0

Table 6: Distribution of patients on the basis of level of obstruction on CECT

S No	Level of obstruction in CECT	No of Patients	Percentage
1	Proximal small bowel	20	20.0
2	Distal small bowel	61	61.0
3	Ileocecal region	13	13.0
4	Large bowel	6	6.0
Total		100	100.0

Table 7: Distribution of patients on the basis of cause identified on USG

S No	Cause identified on USG	No of Patients	Percentage
1	Normal	96	96.0
2	Thickening at IC junction	3	3.0
3	Bowel mass	1	1.0
Total		100	100.0

Table 8: Distribution of patients according to the cause of obstruction evidenced in CECT

S No	Cause identified on CECT	No of Patients	Percentage
1	No obvious cause found	42	42.0
2	Wall thickening	44	44.0
3	Adhesion & stricture	8	8.0
4	Hernia	5	5.0
5	Neoplastic	1	1.0
Total		100	100.0

Table 9: Distribution of patients on the basis of type of management underwent

S No	Type of management	No of Patients	Percentage
1	Medical	30	30.0
2	Surgical	70	70.0
Total		100	100.0

Table 10: Distribution of patients according to the cause for obstruction identified intra operatively

S No	Cause of obstruction	No of Patients	Percentage
1	Adhesion	29	41.4
2	Fibrotic bands & strictures	35	50.0
3	Hernias with adhesion	6	8.6
Total		70	100.0

Table 11: Distribution of patients according to the type of obstruction identified during surgery

S No	Type of obstruction	No of Patients	Percentage
1	Small Bowel obstruction	61	87.1
2	Large bowel obstruction	2	2.9
3	Small bowel and large bowel	3	4.3
4	No Abnormality Detected	4	5.7
Total		70	100.0

Table 12: Evaluation of Ultrasonography (USG) Diagnostic Accuracy for Intestinal Obstruction

USG Findings	Per operative Findings: Obstruction Present	Per operative Findings: No Obstruction	Total
Normal	40 (60.6%)	2 (50.0%)	42
Abnormal/Suspected	26 (39.4%)	2 (50.0%)	28
Total	66 (100%)	4 (100%)	70
Metric			
Accuracy	40.00%	(26 + 2) / 70	
Sensitivity	46.5%	40 / 66	
Specificity	50.00%	2 / 4	
PPV	90.1%	40 / 42	
NPV	7.14%	2 / 28	
Chi-Square Test	Value	df	P-value
Pearson Chi-Square	0.176	1	0.674

Table 13: Evaluation of Contrast-Enhanced Computed Tomography (CECT) Diagnostic Accuracy for Intestinal Obstruction"

CECT Findings	Per operative Findings: Obstruction Present	Per operative Findings: No Obstruction	Total
Abnormal/Suspected	66 (94.3%)	4 (5.7%)	100
Metric			
Accuracy	94.3%	(66 + 0) / 70	
Sensitivity	100%	66 / 66	
Specificity	0%	0 / 4	
PPV	94.30%	66 / 70	
NPV	N/A	0 / 0	

CECT showed superior accuracy in identifying the level and cause of obstruction compared to USG. Diagnostic accuracy of CECT was significantly higher when correlated with intraoperative findings.

Discussion

The present study demonstrates that contrast-enhanced CT significantly outperforms ultrasonography in the evaluation of intestinal obstruction. While USG is useful as a screening tool, its limitations in identifying the level and cause of obstruction reduce its reliability. CECT provides detailed anatomical information, identifies transition zones, and detects complications, making it indispensable for surgical planning. The findings of this study are consistent with previous national and international studies reporting high diagnostic accuracy of CT in intestinal obstruction.

Limitations

- Single-center study
- Operator dependence of ultrasonography
- Limited evaluation of functional obstruction

Clinical Implications and Future Recommendations

Early use of CECT can reduce diagnostic delay and improve surgical outcomes. Future studies incorporating artificial intelligence and functional imaging may further enhance diagnostic precision.

Conclusion

Contrast-enhanced CT is a highly accurate and reliable imaging modality for diagnosing intestinal obstruction and correlates well with intraoperative findings. Ultrasonography, though useful, should not replace CECT in clinically suspected cases.

References

1. Markogiannakis H, Messaris E, Dardamanis D, Pararas N, Tzartzemelis D, Giannopoulos P, et al. Acute mechanical bowel obstruction: clinical

- presentation, etiology, management and outcome. *World J Gastroenterol.* 2007 Jan 21;13(3):432–7.
2. Smith DA, Kashyap S, Nehring SM. Bowel obstruction. 2017;
 3. Hafner J, Tuma F, Hoilat GJ, Marar O. Intestinal perforation. In: StatPearls [Internet]. StatPearls Publishing; 2023.
 4. Long D, Mao C, Liu Y, Zhou T, Xu Y, Zhu Y. Global, regional, and national burden of intestinal obstruction from 1990 to 2019: an analysis from the Global Burden of Disease Study 2019. *Int J Colorectal Dis.* 2023 Oct;38(1):245.
 5. Detz DJ, Podrat JL, Muniz Castro JC, Lee YK, Zheng F, Purnell S, et al. Small bowel obstruction. *Current Problems in Surgery.* 2021 Jul;58(7):100893.
 6. Jena SS, Obili RCR, Das SAP, Ray S, Yadav A, Mehta NN, et al. Intestinal obstruction in a tertiary care centre in India: Are the differences with the western experience becoming less? *Ann Med Surg (Lond).* 2021 Dec;72:103125.
 7. Girma H, Negesso M, Tadese J, Hussen R, Aweke Z. Management outcome and its associated factors among surgically treated intestinal obstruction cases in Dilla University Referral Hospital, Southern Ethiopia. A cross-sectional study. *International Journal of Surgery Open.* 2021 Jun 1;33:100351.
 8. Kulaylat MN, Doerr RJ. Small bowel obstruction. In: *Surgical treatment: evidence-based and problem-oriented.* Zuckschwerdt; 2001.
 9. Beach EC, De Jesus O. Ileus. 2020;
 10. Parker MC, Ellis H, Moran BJ, Thompson JN, Wilson MS, Menzies D, et al. Postoperative adhesions: ten-year follow-up of 12,584 patients undergoing lower abdominal surgery. *Dis Colon Rectum.* 2001 Jun;44(6):822–9; discussion 829–830.
 11. Fitzgibbons RJ, Giobbie-Hurder A, Gibbs JO, Dunlop DD, Reda DJ, McCarthy M, et al. Watchful waiting vs repair of inguinal hernia in minimally symptomatic men: a randomized clinical trial. *JAMA.* 2006 Jan 18;295(3):285–92.
 12. Kapadia MR. Volvulus of the Small Bowel and Colon. *Clin Colon Rectal Surg.* 2017 Feb;30(1):40–5.
 13. Camilleri M, Andresen V. MOTILITY DISORDERS. In: *Pharmacology and Therapeutics* [Internet]. Elsevier; 2009 [cited 2024 Dec 27]. p. 475–86. Available from: <https://linkinghub.elsevier.com/retrieve/pii/B9781416032915500366>
 14. Moe AE. Electrolyte balance in gastrointestinal disease. *Calif Med.* 1955 Nov;83(5):339–42.
 15. Philpott HL, Nandurkar S, Lubel J, Gibson PR. Drug-induced gastrointestinal disorders. *Frontline Gastroenterol.* 2014 Jan;5(1):49–57.
 16. Klingbeil KD, Wu JX, Osuna-Garcia A, Livingston EH. Management of small bowel obstruction and systematic review of treatment without nasogastric tube decompression. *Surg Open Sci.* 2022 Nov 7;12:62–7.
 17. Jackson PG, Raiji M. Evaluation and Management of Intestinal Obstruction. *afp.* 2011 Jan 15;83(2):159–65.
 18. Catena F, Di Saverio S, Kelly MD, Biffl WL, Ansaloni L, Mandalà V, et al. Bologna Guidelines for Diagnosis and Management of Adhesive Small Bowel Obstruction (ASBO): 2010 Evidence-Based Guidelines of the World Society of Emergency Surgery. *World J Emerg Surg.* 2011 Jan 21;6:5.
 19. Agrawal SN, Kanwar KS. Sigmoid volvulus - an important cause of intestinal obstruction: how to deal with it? *International Surgery Journal.* 2020 Jan 27;7(2):465–70. .

20. Catena F, De Simone B, Cocolini F, Di Saverio S, Sartelli M, Ansaldi L. Bowel obstruction: a narrative review for all physicians. *World J Emerg Surg.* 2019 Apr 29;14:20.