

International Journal of Medical Science and Innovative Research (IJMSIR)

IJMSIR: A Medical Publication Hub Available Online at: www.ijmsir.com

Volume - 7, Issue - 6, November - 2022, Page No.: 272 - 278

Imaging of the Proximal Femur

¹Dr. Kshitij Z Badade, MBBS, MS Orthopaedics, Assistant Professor Orthopaedics Department MGM Medical College & Hospital, Navi Mumbai, Maharashtra, India.

Corresponding Author: Dr. Kshitij Z Badade, MBBS, MS Orthopaedics, Assistant Professor Orthopaedics Department MGM Medical College & Hospital, Navi Mumbai, Maharashtra, India.

Citation this Article: Dr. Kshitij Z Badade, "Imaging of the Proximal Femur", IJMSIR- November - 2022, Vol – 7, Issue - 6, P. No. 272 – 278.

Type of Publication: Original Research Article

Conflicts of Interest: Nil

Abstract

Elderly osteoporotic patients frequently get proximal femoral fractures, which can be brought on by a simple fall. They are more frequently brought on by high-energy trauma in younger people. Shortening and outward rotation of the injured leg are the traditional clinical manifestations of a proximal femoral fracture.

Keyword: Rotation, Trochanter, Fluoroscopic

Introduction

A proximal femoral fracture has the following features:

- 1. The exorotation of the leg makes it easier to identify the lesser trochanter
- 2. A hazy thick line (or "white") in an impacted fracture
- 3. Femoral head/neck bone trabeculation disruption and
- 4. Shenton line disruption

Following are the several categories of proximal femoral fractures:

- 1. Intracapsular fracture of the femoral neck
- 2. A fracture of the per- and inter-trochanteric bones
- 3. Greater and lesser trochanter fractures that is isolated
- 4. Subtrochanteric fracture

Proximal femoral fracture types

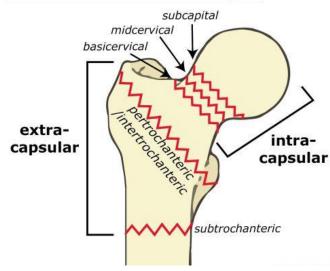


Figure 1: Overview of proximal femoral fracture types
Fluoroscopic visualization of anatomical fracture
reduction and correct implant placement for the proximal
femur can be significantly facilitated using the following
views:

- AP view of the proximal femur
- Axial view of the proximal femur
- Lateral view of the proximal femur

The lateral view does not correctly reflect the implant position in the head-neck fragment.

An axial view is therefore necessary.

1. AP view of the proximal femur

Positioning for optimal view

- The beam is placed perpendicular to the femoral shaft and the coronal plane
- The leg is internally rotated with the patella facing upward

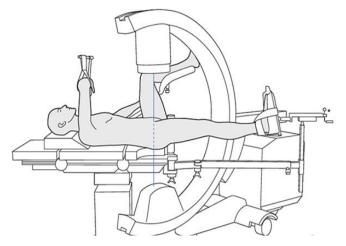


Figure 2: Positioning for optimal view

Verification of optimal view

The optimal view is obtained when:

- Trochanteric area is in the center of the screen
- Both the femoral head (including the hip joint) and shaft are visible

Figure 3: Verification of optimal view

Anatomical landmarks and lines

In the AP view of the proximal femur (here with a trochanteric fracture), the following landmarks and lines can be observed:

- 1. Femoral head
- 2. Femoral neck
- 3. Medial line
- 4. Lesser trochanter
- 5. Greater trochanter
- 6. Femoral shaft
- 7. Intertrochanteric line (anterior) superimposed with the intertrochanteric crest (posterior)

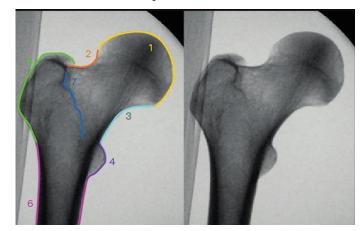


Figure 4: Anatomical landmarks and lines

What can be observed?

- Varus or valgus malalignment
- Rotational malalignment
- Translational displacement
- Correct guide-wire insertion

Figure 5: A. Correct implant positioning

Figure 6: B. Correct implant positioning

2. Axial view of the proximal femur

Positioning for optimal view

- The beam track should avoid the contralateral hip
- A hemi-lithotomy position of the patient, scissoring, or abduction of the contralateral leg may be helpful to optimally place the C-arm
- $\bullet\,$ The beam is rotated externally by approximately 15° off the coronal plane

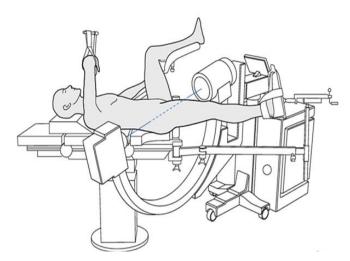


Figure 7: Positioning for optimal view

• The beam is positioned 30° – 45° to the longitudinal axis of the injured leg

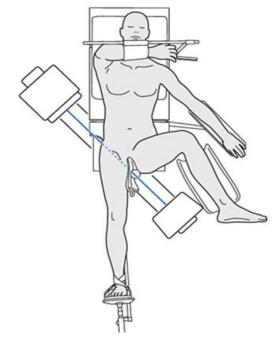


Figure 8: longitudinal axis of the injured leg

Verification of optimal view

The optimal view is obtained when:

- Centered image showing head, neck, and proximal end of shaft
- Head-neck axis is in line with the femoral shaft (within the range of 170° and 190°)
- Contralateral hip is not obstructing the view

Figure 9: Verification of optimal view

Anatomical landmarks and lines

In the axial view of the proximal femur, the following landmarks and lines can be observed:

- 1. Lesser trochanter
- 2. Greater trochanter

- 3. Femoral head
- 4. Posterior line
- 5. Anterior line
- 6. Capsule insertion (intertrochanteric line)

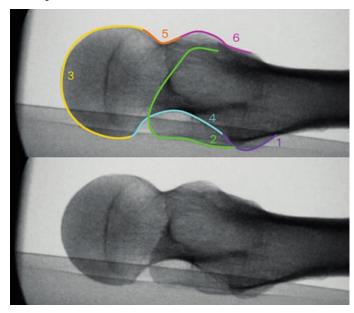


Figure 10: Anatomical landmarks and lines

What can be observed?

- Quality of reduction
- · Head-neck and shaft axis alignment
- Correct guide-wire insertion

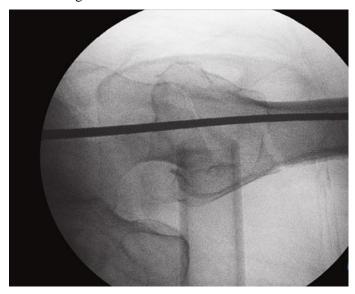


Figure 11
Acceptable implant positioning (center-center).

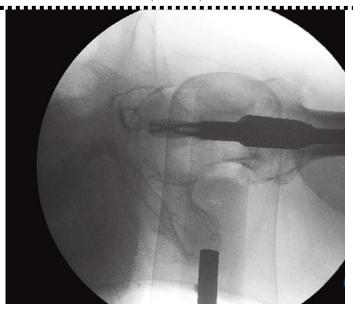


Figure 12

3. Lateral view of the proximal femur

The lateral view shows the ante-version of the head and neck.

Positioning for optimal view

- The beam track should avoid the contralateral hip
- A hemi-lithotomy position of the patient, scissoring, or abduction of the contralateral leg may be helpful to optimally place the C-arm

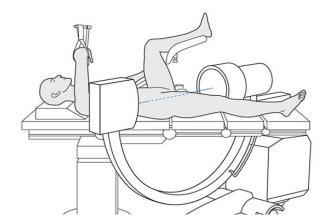


Figure 13

The beam is positioned horizontally, 30° – 45° to the longitudinal axis of the leg and in the coronal plane.

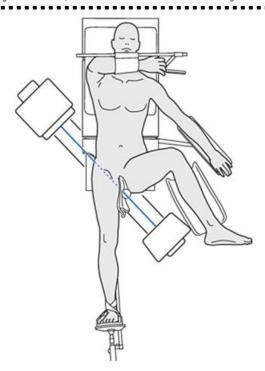


Figure 14

Verification of optimal view

The optimal view is obtained when:

- Centered image showing head, neck, and proximal end of shaft
- Normal ante-version between head-neck axis and femoral shaft is visible
- Trochanteric area is centered in image
- Contralateral hip is not obstructing the view

Figure 15: Verification of optimal view

Anatomical landmarks and lines

In the lateral view of the proximal femur (here with a trochanteric fracture), the following landmarks and lines can be observed:

- 1. Greater trochanter
- 2. Femoral head
- 3. Posterior line
- 4. Anterior line
- 5. Capsule insertion (part of the intertrochanteric line)

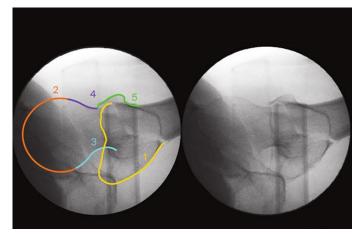


Figure 16: Anatomical landmarks and lines

What can be observed?

- Quality of reduction
- Ante-version

The lateral view is not optimal to confirm implant position (E g. Centre-center of neck screw/blade).



Figure 17: On behalf of all authors, the corresponding author states that there is no conflict of interest.

Declarations

Informed consent

Informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

"Institutional Ethical Committee Approval"

Taken from Institutional Ethical Approval Committee, MGM Medical College & Hospital, Navi Mumbai, Maharashtra, India.

Availability of data and materials

- 1. Imaging Musculoskeletal Trauma: Interpretation and Reporting Andrea Donovan MD, Mark Schweitzer MD. Print ISBN: 9781118158814 |Online ISBN: 9781118551691 | DOI: 10. 1002/9781 1185 51691 Chapter 7: Pelvis and Proximal Femur. Emad Almusa, Stamatis N. Kantartzis, Joshua Leeman https://doi.org/10.1002/9781118551691.ch7
- 2. Orthopaedic aspect of anatomy and radiology of proximal femur Pokhraj P. Suthar, Chirag D. Patel, Manoj Gamit, Dhaval J. Dave, Chandni Wadhwani, Bhumikaben P. Suthar. DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20150287
- 3. Cunningham M, Martin jr C, Rüetschi U. Design and implementation of performance improvement programs for orthopedic trauma surgeons. Association for Medical Education in Europe (AMEE) Conference in Prague 2013 2013; page 661 Available from https:// amee. org/ get attachment/ Conferences/ AMEE- Past- Conferences/ AMEE- Conference- 2013/ AMEE-2013- ABSTRACT-BOOK-updated-190813.pdf.

Reference

1. Krettek C, Miclau T, Grun O, Schandelmaier P, Tscherne H. Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical note. Injury 1998; 29(Suppl 3):C29–39.

- 2. Schmidt A, Kallas K. Imaging Considerations in Orthopaedic Trauma. Rockwood & Green's Fractures in Adults, vol 6. Lippincott Williams & C.A. Rockwood, Wilkins; 2006. p. 354–86.
- 3. Cunningham M, Martin jr C, Rüetschi U. Design and implementation of performance improvement programs for orthopedic trauma surgeons. Association for Medical Education in Europe (AMEE) Conference in Prague 2013 2013; page 661 Available from https:// amee. Org /get attachment/ Conferences/ AMEE Past-Conferences/ AMEE-Conference-2013/AMEE-2013- ABSTRACT-BOOK-updated-190813.pdf.
- 4. Devitt BM, O'Byrne JM. I can C clearly now the rail has gone! Injury 2007; 38 (2):165–8.
- 5. Ramanoudjame M, Guillon P, Dauzac C, Meunier C, Carcopino JM. CT evaluation of torsional malalignment after intertrochanteric fracture fixation. Orthop Trauma Tol Surg Res 2010; 96(8):844–8.
- 6. Heyse-Moore GH, MacEachern AG, Evans DC. Treatment of intertrochanteric fractures of the femur. A comparison of the Richards screw-plate with the Jewett nail-plate. J Bone Joint Surg [Br] 1983; 65(3):262–7.
- 7. Tsukada S, Okumura G, Matsueda M. Postoperative stability on lateral radiographs in the surgical treatment of per trochanteric hip fractures. Arch Orthop Trauma Surg 2012; 132(6):839–46.
- 8. Brunner A, Butler M, Lehmann U, Frei HC, Krater R, Di Lazzaro M, et al. What is the optimal salvage procedure for cut-out after surgical fixation of trochanteric fractures with the PFNA or TFN? a multicenter study. Injury 2016; 47(2):432–8.
- 9. Richards B, Riley J, Saithna A. Improving the diagnostic quality and adequacy of shoulder radiographs in a District General Hospital. BMJ Qual Improv Rep 2016; 11(5):1.

10.Heetveld MJ, Raaymakers EL, van Wal sum AD, Barei DP, Steller EP. Observer assessment of femoral neck radiographs after reduction and dynamic hip screw fixation. Arch Orthop Trauma Surg 2005; 125(3):160–5. 11.Davis D, O'Brien MA, Freemantle N, Wolf FM, Mazmanian P, and Taylor-Vaisey A. Impact of formal continuing medical education: do conferences, workshops, rounds, and other traditional continuing education activities change physician behavior or health care outcomes? JAMA 1999; 282(9):867–74.

12.Imaging Musculoskeletal Trauma: Interpretation and Reporting Andrea Donovan MD, Mark Schweitzer MD. Print ISBN: 9781118158814 |Online ISBN: 978111 8551691 | DOI: 10. 1002/97811 18551 691 Chapter 7: Pelvis and Proximal Femur. Emad Almusa, Stamatis N. Kantartzis, Joshua Leeman https://Doi. org/10. 1002/97811 18551691.ch7

13.Orthopaedic aspect of anatomy and radiology of proximal femur Pokhraj P. Suthar, Chirag D. Patel, Manoj Gamit, Dhaval J. Dave, Chandni Wadhwani, Bhumikaben P. Suthar. DOI: https://dx. Doi. org/ 10. 18 203/2320-6012.ijrms20150287

14.Imaging of the Hip & Bony Pelvis- Techniques and Applications A. Mark Davies (Consultant Radiologist), Karl J. Johnson (Consultant Paediatric Radiologist), Richard William Whitehouse Bony Trauma 2: Proximal Femur. Jeffrey J. Peterson MD & Thomas H. Berquist MD

15.Optimizing intraoperative imaging during proximal femoral fracture fixation - a performance improvement program for surgeons. Daniel Rikli 1, Sabine Gold Hahn 2, Michael Blauth 3, Samir Mehta 4, Michael Cunningham 5, Alexander Joeris 2, PIP Study group. PMID: 29174882 DOI: 10.1016/j.injury.2017.11.024