

International Journal of Medical Science and Innovative Research (IJMSIR)

IJMSIR : A Medical Publication Hub Available Online at: www.ijmsir.com Volume – 7, Issue – 4, August – 2022, Page No. : 98 – 108

Study of relationship between abnormal thyroid function and lipid levels in subclinical and overt hypothyroidism patients in rural tertiary care hospital

¹Nimrah Fathima, Assistant Professor, Dept of General Medicine, JSS Medical College, Mysuru, Karnataks.

²Prathvi Nandalike, Assistant Professor, Dept of General Medicine, AIMS BG Nagara, Mandya, Karnataka.

²Machandrareddy, Senior Resident, Dept of General Medicine, AIMS BG Nagara, Mandya, Karnataka.

³Madhu G, Assistant Professor, Dept of General Medicine, AIMS BG Nagara, Mandya, Karnataka.

⁴Vasudha K V, Junior Resident, Dept of General Medicine, AIMS BG Nagara, Mandya, Karnataka.

Corresponding Author: Machandrareddy, Senior Resident, Dept of General Medicine, AIMS BG Nagara, Mandya, Karnataka.

Citation this Article: Nimrah Fathima, Prathvi Nandalike, Machandrareddy, Madhu G, Vasudha K V, "Study of relationship between abnormal thyroid function and lipid levels in subclinical and overt hypothyroidism patients in rural tertiary care hospital", IJMSIR- August - 2022, Vol - 7, Issue - 4, P. No. 98 - 108.

Type of Publication: Original Research Article

Conflicts of Interest: Nil

Abstract

Background: Thyroid diseases are one of the commonly occurring endocrine disorders worldwide. The prevalence in an unselected Indian community population is found to be 1.4%, with an estimated annual incidence rate of one to two per 1000 women.¹ Thyroid hormones significantly affect lipoprotein metabolism as well as some CVD risk factors, thus influencing the overall CVD risk.² In spite of high incidence of hypothyroidism in South India, very few studies have been done to find its relation with lipid profile specially in rural population and hence the study has been conducted.

Aim: To find relation between abnormal thyroid functions and lipid levels

Materials and methods: Cross-sectional study, carried out at Rural Tertiary hospital on 70 patients attending to the out-patient and in-patient clinical services with abnormal thyroid function tests, during the period from November 2020 to August 2021 in the department of

General medicine JSS Medical College, Mysuru, Karnataka India

Statistical Analysis: All characteristics were summarized descriptively. For continuous variables, the summary statistics of mean, standard deviation (SD) were used. Bivariate correlation analysis using Pearson's correlation coefficient (r) was used to test the strength and direction of relationships between the interval levels of variables. The results were considered to be statistically significant with p-value < 0.05. Data were analyzed using SPSS software v.23.0. and Microsoft office.

Results: A total number of 70 subjects were included in this study, of which 35 were subclinical hypothyroidism cases and 35 were overt hypothyroid cases. In all the cases, the concentrations of TC, TG, LDL and HDL were estimated. In both study groups females dominated with 72.9% of total population. Mean age in subclinical group

was 41 ± 4.9 years with maximum incidence between 31-40 years. Mean age in overt group was 37.9 ± 2.7 years with maximum incidence between 31-40 years. The mean TC and LDL levels in subclinical group were 221 ± 10.98 and 150.3 ± 4.59 .

These were significantly increased, whereas mean TG was 185.7 ± 22.65 and not significantly increased. The mean HDL was 42.89 ± 5.90 and was significantly decreased. In overt group mean TC, TG and LDL levels were 240.21 ± 21.76 , 217.8 ± 21.91 and 154.87 ± 14.46 , these were significantly raised, mean HDL was 32.36 ± 5.8 and was significantly decreased. In subclinical group correlation of TSH with TC and LDL was statistically significant. In overt group correlation of TSH with all lipid parameters (TC, TG, HDL and LDL) was statistically significant. The difference in mean values of TC, TG, LDL and HDL among subclinical and overt was statistically significant.

Conclusion: The study has demonstrated that both subclinical and overt hypothyroidism is associated with dyslipidemia. It can be concluded that both subclinical hypothyroidism and overt hypothyroidism are associated with abnormal serum lipid profile and these abnormalities increase with serum TSH levels. Such altered lipid profile may increase the risk of atherosclerosis and coronary artery disease. So monitoring of serum lipid profile in subclinical and overt hypothyroidism patients should be done to reduce or prevent the risk of development of atherosclerosis and cardiovascular diseases.

Prudent substitution therapy with L-thyroxine is indicated in patients with hypothyroidism, with or without angina, to counteract the cardiovascular risk resulting from dyslipidemia.

Keywords: Thyroid disorder and dyslipidemia Hypo thyroidism and cardio pvascular diseases Sub clinical hypo thyroidism

Introduction

Thyroid diseases are one of the commonly occurring endocrine disorders worldwide. In India about 42 million people suffer from varied thyroid disorders.³ Data from the third National Health and Nutrition Examination Survey (NHANES III) showed a 4.6% prevalence of hypothyroidism in the general population. Deficiency of thyroid hormone secretion results in hypothyroidism. When TSH is elevated to compensate for impaired thyroid output and free thyroid hormones are normal called subclinical hypothyroidism. As thyroid damage continues, TSH levels rise further but T4 levels fall. The TSH at this stage is usually greater than 10 mU/l, symptoms become apparent, and the patient is said to have overt or clinical hypothyroidism.⁴ Hypothyroidism is a spectrum of disorders with abnormal thyroid function tests which may or may not be associated with clinical signs and symptoms. Both subclinical and overt hypothyroidism are associated with altered lipid profile. A linear positive association has been seen between thyroid stimulating hormone (TSH) values in the reference range and concentrations of total serum cholesterol, LDL (low density lipoprotein) cholesterol, non-HDL cholesterol and TG (Triglycerides), and a linear negative association with HDL (High density lipo protein) cholesterol.^{5,6} Thyroid hormones significantly affect lipoprotein metabolism as well as some CVD risk factors, thus influencing the overall CVD risk.²

Many studies have been conducted and shown a significant relation between hypothyroidsm and lipid profile, but many of these are conducted in western countries and significant data is lacking in Indian population with special reference to effect of subclinical hypothyroidsm on lipid profile. In spite of high incidence of hypothyroidism in South India, very few studies have

been done to find its relation with lipid profile and hence

the study was conducted.

Materials and methods

Study site

Patients attending to the out-patient and in-patient clinical services in the department of General medicine JSS Medical College, Mysuru, Karnataka India

Study period

Study carried out during the period from November 2020 to August 2021

Study type: Cross-sectional study

Source of data/Sampling method

Patients attending to the out-patient and in-patient clinical services with abnormal thyroid function tests, during the period from November 2020 to August 2021 in the department of General medicine JSS Medical College, Mysuru, Karnataka India. Purposive sampling of total 70 patients was done with following inclusion and exclusion criteria.

Sample size

A total of 70 patients (35 subclinical hypothyroid and 35 overt hypothyroid cases) were selected for the study after applying inclusion and exclusion criteria.

Inclusion criteria

1. Age more than 18 years.

2. Patients with Abnormal thyroid function tests.

Exclusion criteria

1. Age less than 18 years.

2. Patients with known chronic disease (Diabetes Mellitus, Chronic Renal failure, cirrhosis, SLE, rheumatoid arthritis, HIV/AIDS).

3. Pregnant Women.

4. Patients who are on drugs which causes dyslipidemia.(Beta blockers, steroids, OCPs)

- 5. Patients on hypolipidemic drugs.
- 6. Patients with secondary hypothyroidism.

7. Patients who are not willing to give an informed

consent.

Selected Patients Are Subjected for The Following Investigations

- Thyroid Profile (T3, T4 and TSH)
- Fasting Lipid Profile (TC, TG, HDL, LDL, VLDL).
- Complete blood count
- Random Blood Sugar (RBS)
- Free Thyroxine (FT4) if required
- Thyroperoxidase (TPO) antibody if require

Data Collection

Detailed present, past, personal and family history noted and clinical examination done specially looking for any signs of hypothyroidism, cardiovascular disorders and dislipedemia. All these findings were properly entered in proforma. A 10-hour fasting blood sample was collected and processed for lipid profile estimation and other investigations whenever necessary. Fasting lipid profile included estimation of Total cholesterol (TC). Triglycerides (TG), Low density lipoproteis (LDL), High density lipoproteins (HDL). Fully automated ERBA MANNHEIMEM 200 system was used to determine the lipid profile. Normal reference range for lipid profile has been considered as Sr. Total Cholesterol (150-200 mg/dl); Sr. Triglycerides (80-200 mg/dl); Sr. HDL (40-60 mg/dl), Sr. LDL (90-130 mg/dl). The normal reference range considered is TSH (0.34 TO 5 microIU/ml), T3 (77 to 135 nanogram/dl), T4 (4.5 to 11.7 microgram/dl). Subclinical hypothyroid is TSH level more than 5.1 microIU/L and T4 level more than or equal to 4.5 μ g/dL; overt hypothyroidism is TSH level more than 5.1 microIU/L and T4 level less than $4.5 \,\mu g/dL$.

Statistical analysis

All characteristics were summarized descriptively. For continuous variables, the summary statistics of mean, standard deviation (SD) were used. For categorical data,

the number and percentage were used in the data summaries. Chi-square (χ^2) / Freeman-Halton Fisher exact test was employed to determine the significance of differences between groups for categorical data. The difference of the means of analysis variables between two independent groups was tested by unpaired t test. The difference of the means of analysis variables between more than two independent groups was tested by ANOVA and F test of testing of equality of Variance. Bivariate correlation analysis using Pearson's correlation coefficient (r) was used to test the strength and direction of relationships between the interval levels of variables. If the p-value was < 0.05, then the results were considered to be statistically significant otherwise it was considered as not statistically significant. Data were analyzed using SPSS software v.23.0 and Microsoft office.

Results

Table 1: Distribution of cases according to Sex

Sex	N		%
Male	19		27.1
Female	51		72.9
Total	70		100.0
M/F ratio			0.4

Figure 1: Distribution of cases according to Sex

It was observed that majority of patients were females (72.9%) and males were (27.1%)

Table 2: Distribution of Sex between Subclinical and

Overt Hypothyroid group

	S	ubclinical		n	
Sex	Hypothyroid		Hyj	P value	
	N	%	N	%	varue
Male	12	34.3	7	20.0	
Female	23	65.7	28	80.0	0.179
Total	35	100.0	35	100.0]

A total number of 70 subjects are included in this study. Among them 35 are subclinical hypothyroid cases and 35 are overt hypothyroid cases.

Among 35 subclinical hypothyroid 23 (65.7%) were females and 12(34.3%) were males.

Among 35 overt hypothyroid 28 (80%) were females and 7 (20%) were males.

Table 3: Distribution of cases according to Age

Age (Yrs)	Ν	%
18-30	14	20.0
31-40	26	37.1
41-50	19	27.1
51-60	8	11.4
>60	3	4.3
Total	70	100.0

The above table shows distribution of patients according to age. It was observed that majority of patients were in age group of 31-40 years (37.1%) followed by 41-50 years (27.1%).

Table 4: Distribution of Symptoms between Subclinicaland Overt Hypothyroid group

SymptomHypothyroidHypothyroidN%N%Weakness, Tiredness2571.43291		Subclini	cal	Overt		
N%N%Weakness, Tiredness2571.43291	Symptom	Hypothyroid N %		Hypothyroid		
Weakness, Tiredness2571.43291				N	%	
Tiredness 25 71.4 32 91	Weakness,					
	Tiredness	25	71.4	32	91.4	
Weight gain 7 20.0 31 88	Weight gain	7	20.0	31	88.6	

Cold				
intolerance	9	25.7	24	68.6
Dry skin	5	14.3	20	57.1
Menstrual				
irregularities	0	0.0	4	11.4
Constipation	3	8.6	14	40.0

Table 5: Distribution of TC (Total cholesterol) between

Subclinical and Overt Hypothyroid group

ТС	Subclinical Hypothyroid		Overt Hypothyroid		p value
	Ν	%	N	%	value
Normal	11	31.4	10	28.6	
Increasing	21	60.0	23	65.7	0 844
Decreasing	3	8.6	2	5.7	0.011
Total	35	100.0	35	100.0]

In Subclinical Hypothyroid Group, Total cholesterol was increased in 60% patients, decreased in 8.6% patients and normal in 31.4% patients.

Table 6: Distribution of TG(TRIGLYCERIDE) betweenSubclinical and Overt Hypothyroid group

TG	Subclinical Hypothyroi d		Overt Hypot	hyroid	p value
	Ν	%	N	%	
Normal	26	74.3	9	25.7	
Increasing	6	17.1	25	71.4	0.002*
Decreasing	3	8.6	1	2.9	0.002
Total	35	100.0	35	100.0	

Note: *means significant at 5% level of significance (p<0.05)

In subclinical hypothyroid group, triglyceride was normal in in 74.3% patients, invreased in 17.1% patients and decreased in 3% patients. In overt hypothyroid group, triglyceride was increased in 71.4% patients, decreased in 2.9% and normal in 25.7% patients.

Table 7: Distribution of LDL between Subclinical andOvert Hypothyroid group

	Subclinical		Overt		
LDL	Hypothyroid		Hypothyroid		p value
	Ν	%	Ν	%	value
Normal	11	31.4	14	40.0	
Increasing	17	48.6	19	54.3	0.197
Decreasing	7	20.0	2	5.7	
Total	35	100.0	35	100.0	

In subclinical hypothyroid group the LDL was increased in 48.6% patients, decreased in 20% patients and normal in 31.4% patients.

In overt hypothyroid group the LDL was increased in 54.3% patients, decreased in 5.7% patients and normal in 40%.

Table 8: Distribution of HDL between Subclinical andOvert Hypothyroid group

HDL	Subclinical Hypothyroid		Overt Hypothyroid		p value
	N	%	N	%	varae
Normal	12	34.3	9	25.7	
Increasing	5	14.3	7	20.0	0 674
Decreasing	18	51.4	19	54.3	0.071
Total	35	100.0	35	100.0	

In subclinical hypothyroid group the HDL was increased in 14.3% patients, decreased in 51.4% and normal in 34.3%.

In overt hypothyroid group the HDL was increased in 20% patients, decreased in 54.3% and normal in 25.7% patients.

Table 9: Comparison of Mean Lipid profile parameters

TC Subclinical Overt р Hypothyroid Hypothyroid value Mean± SD 221 ± 10.98 240.21 ± 21.76 < 0.00 1* Range (268 - 130)(296 - 140)TG Mean± SD 185.7 ± 22.65 217.8 ± 21.91 < 0.00 1* (200 - 33)(200 - 30)Range LDL 150.3 ± 4.59 Mean± SD 154.87 ± 14.46 < 0.001* (198 - 56)(185 - 50)Range HDL Mean± SD 42.89 ± 5.90 32.36 ± 5.8 < 0.00 (70 - 15)1* Range (95 - 12)

between Subclinical and Overt Hypothyroid group

Note: *means significant at 5% level of significance (p<0.05)

Table 10: Correlation of TSH & lipid profile

Parameters	Subclinical Hypothyroid		Overt Hypothyroid	
	Correlation coefficient	p value	Correlation coefficient	p value
TSH v/s TC	0.383	0.044*	0.433	0.029*
TSH v/s TG	0.156	0.564	0.352	0.009*
TSH v/s HDL	-0.074	0.644	-0.346	0.045*
TSH v/s LDL	0.402	0.037*	0.478	0.037*

Note: *means significant at 5% level of significance (p<0.05)

In subclinical group correlation of TSH with TC and LDL was statistically significant.

In overt group correlation of TSH with all lipid parameters (TC, TG, HDL and LDL) was statistically significant.

Discussion

Hypothyroidism is the second most common endocrine disease after diabetes mellitus, but often under diagnosed. A number of studies have demonstrated various lipid abnormalities in hypothyroidism.

Thyroid hormone influences all metabolic pathways including lipid metabolism. Untreated hypothyroidism can lead to premature atherosclerosis and its complications. Atherosclerosis, as the underlying cause particularly of CAD, is a leading cause of human mortality and morbidity.

The present study is done among the hypothyroid patients attending Al- ameen medical college. The possible correlation between TSH, T4, T3 and lipid profile was evaluated. The patients were divided into subclinical and overt hypothyroid based on the lab values and change in lipid parameters relation to thyroid state was observed in both subclinical and overt hypothyroid groups.

Age and Sex

Present study showed female predominance with 72.9% females and 27.1% males. This was similar to the study by Vanderpump et al⁷ and Agarwal et al⁸. According to A. Regmi et al, higher prevalence of thyroid dysfunction in females may be due to a sex difference in the prevalence of autoimmune diseases.⁹

In subclinical hypothyroid females were 65.7% and males were 34.3%. This finding is in accordance with the other studies. In study by Ashraf et al¹⁰ females constituted 72.79% of study populations. Studies by Desmukh V. et al¹¹ and Raj Kumar Yadav et al¹² also showed female predominance.

In overt hypothyroid females were 80% and males were 20%. This was in accordance with study by Ashraf et al¹³ in which 72.2% were females. Al-Farttoosi et al¹⁴ showed

female preponderance with 86.1% of females and 13.9% of males.

In present study 34.3% cases of SCH were in the age group of 31-40 which is more than that seen in study of Raj Kumar Yadav et al¹², Ashraf et al¹³ but similar to the study by Tunb ridge et al¹⁵. In present study 27.5% cases were in age group of 41-50 years which is similar to that seen in study of Raj Kumar Yadav et al¹².

In present study mean age of patients was 41 ± 4.9 years. This is similar to the study by Ashraf et al¹⁰ in which mean age in SCH was 41 ± 12 years.

In present study among overt hypothyroid patients 40.0% were in age group 31-40 years which was is more that seen in studies by Tunb ridge et al¹⁵ and Ashraf et al¹³.In present study mean age among overt hypothyroid patients was 37.9 ± 2.7 which was in accordance to study done by Ashraf et al¹³, Tunb ridge et al¹⁵ and Vargas et al¹⁶.

Table 11:Showing General symptoms of subclinicalhypothyroid subjects in various studies

Symptom	Present	Martin et	Deshmuk	Sureshbab
	study	al^{17} (%)	h Vet al ¹¹	u KP et
	(%) (n	(n =104)	(%)	al ¹⁸ (%)
	= 35)		(n = 26)	(n = 38)
Weakness,	71.4	74	69.2	39.5
Tiredness				
Cold	25.7	_	33.8	7.8
intolerance				
Weight gain	20.0	26	61.2	23.7
Constipation	8.6	_	18.5	_

In present study most common symptom in subclinical hypothyroid patients was weakness and tiredness 25 (71.4%) followed by cold intolerance 9 (25.7%), weight gain 7 (20%).

Weakness and weight gain were common symptoms in study by Vaishali Deshmukh et al¹¹, Sureshbabu KP et al¹⁸ and Martin et al¹⁷. The incidence of weakness in present study correlated with study by Martin et al^{17} and Deshmukh et al^{11} .

The incidence of weight gain in present study correlatd with study by Martin et al¹⁷ and Sureshbabu KP et al¹⁸. Table 12: Showing General symptoms in overt hypothyroid subjects in various studies

Symptom	Present	Al	Allan	Rajkumar
	study	farttoosi	et al ¹⁹	Yadav et
	(%) (n=	et al ¹⁴	(%)	al ¹² (%) (n
	78)	(%) (n=	(n=	= 34)
		36)	140)	
Weakness,	91.4	88.9	81	74
Tiredness				
Weight gain	88.6	66.7	72.3	50
Cold	68.6	58.1	-	12.9
intolerance				
Dry skin	57.1	-	-	-
oligomenorrhea	11.4	-	-	33.5
Constipation	40.0	-	-	-

In present study most common symptom in overt hypothyroid patients was weakness and tiredness 91% followed by weight gain 88.6% these findings in present study were consistent with findings in studies of Al Farttoosi et al¹⁴ and Allan et al¹⁹ and incidence was less as compared to that seen in study by Rajkumar Yadav et al¹².

Incidence of Oligomenorrhea was found in 12% in present study which is less than study by Rajkumar Yadav et al¹².

Correletation of Lipid parameters in sub clinical and overt hypothyroid

Subclinical hypothyroid group:

Table 13: 6.10: Showing Mean lipid values of subclinical

hypothyroid subjects in various studies

Parameters	Present	Efstathia	Shrestha	LA way BA	
	study	dou et	N ²¹	et al ²²	
	[mg/dl]	al^{20}	[mg/dl]	[mg/dl] (n=	
	(n =35)	[mg/dl]	(n= 19)	70)	
		(n= 66)			
Total	221 ±	222 +45	$202.88 \hspace{0.2cm} \pm \hspace{0.2cm}$	182.91 ±	
Cholestero	10.98		50.74	41.01	
1					
TG	185.7 ±	104+56	$184.02 \pm$	173.79 ±	
	22.65		85.7	99.00	
LDL	150.3 ±	139+28	$123.62 \ \pm$	105.45 ±	
	4.59		47.25	38.07	
HDL	$42.89~\pm$	57+16	42.24 ±	42.27 ±	
	5.90		10.51	7.77	

Mean TC in present study was 221 ± 10.98 mg/dl. Mean values in studies by Efstathiadou et al²⁰, Shrestha N²¹ were significantly above the normal levels which is similar to that seen in present study. There was statistically significant increase in TC in SCH patients in present study, which was in accordance with study by Efstathiadou et al²⁰ and Shrestha N²¹.

Mean TG in present study was 185.7 ± 22.65 mg/dl. Mean TG level was comparable to study by Shrestha N²¹ and LA way BA et al²². In present study 74.3% SCH patients had normal TG levels. This was comparable to study by Efstathiadou et al²⁰, Shrestha N²¹ and Chan et al²³, these studies also had TG within normal range in majority of patients with SCH.Mean LDL in present study was 150.3 ± 4.59 mg/dl. Mean LDL was slightly higher in present study as compared to study by Efstathiadou et al²⁰, Shrestha N²¹ and LA way et al²². There was statistically significant increase in LDL in SCH patients, which is in accordance with study by Efstathiadou et al²⁰, Shrestha N²¹ and la way et al²². Mean HDL in present study was 42.89 ± 5.90 mg/dl. Mean HDL level was comparable to study by Shrestha N²¹ and LA way B et al²², where as it was lower than that seen in studies by Efstathiadou et al²⁰ and Chan et al²³. There was decrease in HDL in SCH patients, which was in accordance with study by Efstathiadou et al²⁰, Chan et al²³, LA way et al²². In present study among patients with subclinical hypothyroidism we found increased level of TC and LDL, decreased level of HDL and TG were within normal range.

Table 14: Showing Mean lipid values in overthypothyroid subjects in various studies

Parameters	Present	Shretha	Chan et	Dipankar
	study	N ²¹	al ²³	et al ²⁴
	[mg/dl]	[mg/dl]	[mg/dl]	[mg/dl]
	(n= 78)	(n= 26	(n=108)	(n= 35)
Total	240.21 ±	213.05	202.1 ±	224.1 ±
Cholesterol	21.76	± 63.8	45.9	36.9
	(278 –			
	219)			
TG	217.8±	177.81		248.3 ±
	21.91	± 61.01		45.8
	(266 –			
	171)			
LDL	155.26 ±	136.14	121.8 ±	165.4 ±
	15.16 (182	± 60.75	37.0	28.4
	- 120)			
HDL	31.50 ±	39.86 ±	53 ± 14.6	30.6 ±
	5.6	9.45		15.2
	(46 – 23)			

Mean TC in present study was 240.21 ± 21.76 mg/dl. This is comparable to study by Shresth N²¹ et al, Chan et al²³ and Dipankar et al²⁴.

Mean TG in present study was 217.9 ± 21.91 mg/dl. This is comparable to study by Shresth N²¹ and Dipankar et al²⁴.

Mean LDL in present study was 155.26 ± 15.16 mg/dl. This is comparable to study by Shresth N²¹, Chan et al²³ and Dipankar et al²⁴. Mean HDL in present study was 31.50 ± 5.6 md/dl. This is comparable to study by Shresth N^{21} , Chan et al²³ and Dipankar et al²⁴. In the present study, there was statistically significant increase in TC, TG, and LDL in overt hypo thyroids. These findings are in accordance with study by Efstathiadou Z et al²⁰ and Costantini F et al²⁵. There was statistically significant decrease in HDL cholesterol in overt hypothyroids. This finding is in accordance with study of Costantini F et al²⁵, Dull art et al²⁶, Archana et al²⁷.In present study mean value of TSH in subclinical and overt hypothyroids are 8.1 ± 1.1 and 78.6 ± 53.6 . In present study the correlation of TSH values with serum TC, and LDL were statistically significant in subclinical hypothyroid. There is positive correlation between TSH and TC and LDL. Similar findings are shown in study by Al Sayed A et al^{28} .

The Colorado thyroid disease prevalence study showed that Total Cholesterol and LDL-C in SCH were significantly higher than in euthyroidism but Triglyceride and HDL-C were not significantly different. In present study the correlation of TSH values with serum TC, TG, LDL and HDL were statistically significant in overt hypothyroid. There is positive correlation between TSH and TC, TG, LDL and negative correlation with HDL. This is similar to study by Singh et al²⁹. Most of the studies there is similar findings to our study suggesting positive correlation between TSH and T Cholesterol, LDL-C and Triglyceride. There is negative correlation between TSH and HDL-C. This finding further suggests that increasing grades of hypothyroidism causes dyslipidemia.

Conclusion

The study has demonstrated that both subclinical and overt hypothyroidism are associated with dyslipidemia.

The total cholesterol, LDL and TG were significantly increased in overt hypothyroid, where as in subclinical TC and LDL were significantly high. The HDL levels were significantly decreased in both subclinical and overt hypothyroid patients. These findings show presence of atherogenic lipid profile in both subclinical and overt hypothyroidism. Hence screening and treatment for subclinical hypothyroidism should be done to prevent its adverse effects on lipid metabolism.

The correlation study showed that severity of the lipid abnormality increased with increase in serum TSH levels. Thyroid hormones regulate the expression of enzymes involved in all steps of lipid metabolism leading to the development of qualitative and quantitative changes of lipids, in thyroid disease. Hpyerlipidemia contribute to increased risk of atherogenesis and cardiovascular morbidity.

Thus, it can be concluded that both subclinical hypothyroidism and overt hypothyroidism are associated with abnormal serum lipid profile and these abnormalities increase with serum TSH levels. Such altered lipid profile may increase the risk of disease. atherosclerosis and coronary artery So monitoring of serum lipid profile in subclinical and overt hypothyroidism patients should be done to reduce or prevent the risk of development of atherosclerosis and cardiovascular diseases. Prudent substitution therapy with L-thyroxine is indicated in patients with hypothyroidism, with or without angina, to counteract the cardiovascular risk resulting from dyslipidemia.

References

1. Krishan P, Randhir S. Clinical perspective of hypothyroidism. J App Pharm Sci. 2011; 1 (5):64-8.

2. Duntas LH. Thyroid disease and lipids. Thyroid. 2002; 12(4):287-93.

3. Unnikrishnan AG, Menon UV. Thyroid disorders in India: An epidemiological perspective. Indian J Endocr Metab. 2011; 15 (6):78-81.

4. Disorders of the thyroid gland. In: Fauci, Kasper, Hauser, Longo, Jameson, Loscalzo J. editors. Harrison's Principles of Internal Medicine 19th ed. New York: Mc Graw Hill companies; 2015:2283-2293.

5. As old BO, Vatten LJ, Nilsen TI, Bjoro T. The association between TSH within the reference range and serum lipid concentrations in a population-based study. The HUNT Study. Eur J Endocrinol. 2007; 156(2):181-6.

6. Teixeira Pde F, Reuters VS, Ferreira MM, Almeida CP, Reis FA, Buescu A, et al. Lipid profile in different degrees of hypothyroidism and effects of levothyroxine replacement in mild thyroid failure. Transl Res 2008 ; 151(4):224-231.

7. Vanderpump MP, Turnbridge WM. Epidemiology and prevention of clinical and subclinical hypothyroidism. Thyroid 2002; 12: 839-847.

8. Agarwal G, Sudhakar MK, Singh M, Senthil N, Rajendran A. The prevalence of thyroid dysfunction among South Indian women with Metabolic Syndrome . J. of clinical & diagnostic research 2011; 5(2): 213-16.

9. A Regmi, B Shah, BR Rai, A Pandeya. Serum lipid profile in patients with thyroid disorders in central Nepal. Nepal Medical College Journal 2010; 12(4): 253-256.

 Aminorroaya MD, Janghorbani PhD, Amini MD, Hovsepian MD, Tabatabaei MD, Fallah MD .The Prevalence of Thyroid Dysfunction in an Iodine-Sufficient Area in Iran, Arch Iranian Med 2009; 12 (3): 262 – 270.

11. Deshmukh V, Behl A, Iyer V, Joshi H, Dholye PJ , Varthakavi KP. Prevalence, clinical and biochemical profile of subclinical hypothyroidism in normal population in Mumbai Indian J Endocr Me tab . 2013 ; 17(3): 454–59.

12. Yadav RK, Magar NT, Poudel B, Yadav NK, YadavB. Prevalence of Thyroid Disorder in Western Part of Nepal J Clin Diagn Res. 2013; 7(2): 193-96.

 Aminorroaya MD, Janghorbani PhD, Amini MD, Hovse pian MD, Tabatabaei MD, Fallah MD .The Prevalence of Thyroid Dysfunction in an Iodine-Sufficient Area in Iran, Arch Iranian Med 2009; 12 (3): 262 – 270.

14. Al-Farttoosi MJA, Gha four ASA, Al-Zaidi AS. Cardiovascular Mani festations of Primary Hypo thyroidism. The Iraqi postgraduate medical journal .2010;9 (2): 117-18.

15. Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F ,et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf) .1977;7(6): :481-493.

16. Vargas-Uricoechea H, Bonelo-Perdomo A, Sierra-Torres CH. Effects of thyroid hormones on the heart. Clin Investig Arterioscler. 2014; 26(6):296-309.

17. Carlé A, Pedersen IB, Knudsen N, Perrild H, Overseen L, Lehrberg P. Hypothyroid symptoms and the likelihood of overt thyroid failure: a population-based case–control study. Eur J Endocrinol .2013 ;171(5):593-602.

Martin I, Eduardo O, Gilbert H, Clark T, Nanada F.
Subclinical thyroid diseases a scientific review. JAMA.
2004; 291(2): 228–238.

19. Surks MI, Chopra IJ, Mariash CN, Nicoloff JT, Solomon DH . American thyroid association guidelines for use of laboratory test in thyroid disorders. J Am Med Assn. 1990 ;263(11):1529-1532.

20. Efstathiadou Z, Bits is S, Milionis HJ, Kuku Vitis A, **B**airaktari ET, Elisaf MS, et al. Lipid profile in

subclinical hypothyroidism: Is L-thyroxine substitutionbeneficial?. Eur J Endocrinol. 2001 ;145(6):705-10.21. Shrestha N. Thyroid Dysfunction and its Effect in

Serum Lipids. J Nepal Health Res Counc 2011;9(18):33-7.

22. La way BA, War FA, Shah S, Misgar RA, Kotwal SA. Alteration of Lipid Parameters in Patients With Subclinical Hypothyroidism. Int J Endocrinol Me tab. 2014; 12(3): e17496.

23. Jung CH, Sung KC, Shin HS, Rhee EJ, Lee WY, Kim BS, et al. Thyroid Dysfunction and Their Relation to Cardiovascular Risk Factors such as Lipid Profile, hsCRP, and Waist Hip Ratio in Korea. The Korean Journal of Internal Medicine 2003; 18(3): 146-153.

24. Dipankar SP, Mali BY, Borade NG, Patwardhan M. H. Estimation of Lipid Profile, Body Fat Percentage, Body Mass Index, Waist to Hip Ratio in Patients with Hypothyroidism and Hyperthyroidism. J Phys Pharm Adv. 2012, 2(9): 330-36.

25. Costantini F, Pier Domenico SD, Cesare DD, Remigis P, Bucciarelli T, Bittolo-Bon G, et al. Effect of Thyroid Function on LDL Oxidation. Arterioscler Thromb Vasc Biol. 1998; 18(5):732-737.

26. Dullaart RP, Hoogenberg K, Groener JE, Dikkeschei LD, Erkelens DW, Doorenbos H. The activity of cholesteryl ester transfer protein is decreased in hypothyroidism: a possible contribution to alterations in high-density lipoproteins. Eur J Clin Invest. 1990; 20 (6):581-87.

27. Archana P ,Lal AK. Serum lipids in hypothyroidism: our experience. Indian Journal of Clinical Biochemistry 2006; 21 (2):153- 55. 28. Al Sayed A, Al Ali N, Bo Abbas Y, Al fadhli E. Subclinical hypothyroidism is associated with early insulin resistance in Kuwaiti women. Endocrine Journal 2006; 53(5): 653-657.

29. Singh BM, Goswami B and Mallika V. Association between insulin resistance and hypothyroidism in females attending a tertiary care hospital. Indian Journal of Clinical Biochemistry 2010; 25 (2): 141-145.