

International Journal of Medical Science and Innovative Research (IJMSIR)

IJMSIR : A Medical Publication Hub

Available Online at: www.ijmsir.com Volume – 7, Issue – 1, January – 2022, Page No. : 269 - 288

Erythropoiesis Stimulating Agents (ESA) for the treatment of Anemia in Patients with Chronic Kidney Disease (CKD)

¹Dr Alan Almeida, MD, MNAMS, FISN, PD Hinduja Hospital and Medical Research Center, Mahim and Khar, Mumbai 400016.

²Dr Bharat Shah, MD, DNB (Nephrology) Global Hospital, Parel, Mumbai 400012 & Anil Clinic, Chakala, Andheri (East), Mumbai 400093.

³Dr Dinesh Khullar, D.M (Nephrology), FACP, FRCP (Edin), FISOT Chairman, Nephrology and Renal Transplant Medicine, Max Super Speciality Hospital, Saket, New Delhi-110017.

⁴Dr Jatin Kothari, MD, DM (Nephrology) Hinduja Group of Hospitals, Apex kidney Care & Foundation, Mumbai 400016.

⁵Dr Shyam Bansal, MD, DM, FISN, FASN (US), FRCP (London) Secretary Delhi Nephrology Society, Executive member Indian Society of Nephrology, Director Nephrology and Kidney Transplantation Medanta-Medicity, CH Baktawar Singh Road, Sector 38, Gurgaon, Haryana 122001.

⁶Dr Sree Bhushan Raju, MD, DM (AIIMS), DNB, MNAMS, MBA (ICFAI), FICP, FISN, FIACM, FISOT, FASN, FACP Professor and Head Dept. of Nephrology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, Hyderabad – 500082.

⁷Dr Sanjay Kamble, MBBS, DPH, Department of Medical Affairs, Wockhardt Limited, Wockhardt Towers, Bandra Kurla Complex, Bandra (East), Mumbai 400051, Maharashtra, India.

⁸Dr Shahu Ingole, MD, Department of Medical Affairs, Wockhardt Limited, Wockhardt Towers, BandraKurla Complex, Bandra (East), Mumbai 400051, Maharashtra, India.

Corresponding Author: Dr Sanjay Kamble, MBBS, DPH Department of Medical Affairs, Wockhardt Limited, Wockhardt Towers, Bandra Kurla Complex, Bandra (East), Mumbai 400051, Maharashtra, India.

Citation this Article: Dr Alan Almeida, Dr Bharat Shah, Dr Dinesh Khullar, Dr Jatin Kothari, Dr Shyam Bansal, Dr Sree Bhushan Raju, Dr Sanjay Kamble, Dr Shahu Ingole, "Erythropoiesis Stimulating Agents (ESA) for the treatment of Anemia in Patients with Chronic Kidney Disease (CKD)", IJMSIR- January - 2022, Vol – 7, Issue - 1, P. No. 269 – 288.

Type of Publication: Review Article

Conflicts of Interest: Nil

Abstract

Anemia is a major complication of chronic kidney disease (CKD), with erythropoietin (EPO) deficiency being the major cause. Use of erythropoiesis stimulating agents (ESA) has resulted in remarkable improvement in the quality of life of CKD patients. ESA cause conformational changes of the EPO receptor, resulting in phosphorylation or activation of signaling molecules. It causes inhibition of apoptosis and activation of erythropoiesis, leading to the formation of red blood cells. It also results in triggering various cellular processes that include progenitor stem cell development, cellular integrity, and angiogenesis. These mechanisms induce pleiotropic effects in other organ systems, viz.,

cardiovascular, central nervous and renal systems. Studies like NHCT, CHOIR, CREATE, DRIVE, and TREAT which were conducted to understand the use of ESA in patients undergoing dialysis, led to the development of new drug molecules with improved pharmacokinetic and pharmacodynamic characteristics. Darbepoetin alpha and pegylated epoetin beta were the first long-acting ESAs. In addition to these, other ESA molecules with structural modifications and mechanisms have recently been developed. Of these, few are under clinical and preclinical review. These molecules/therapies include EPO gene therapy, Hypoxiainducible factor (HIF) stabilizers, EPO fusion proteins, GATA inhibitors and Activin receptor ligand traps.

Keywords: Anemia, Chronic Kidney Disease (CKD), Erythropoietin (EPO), Erythropoiesis stimulating agent (ESA), Hemodialysis, Pleotropic.

Introduction

In patients with chronic kidney disease (CKD), anemia is a common complication and also an important contributor for worsening of cardiovascular disease (CVD)¹⁻⁴. Based on KDIGO guidelines (2012), anemia in CKD is defined as Hb level < 13g/dl in men and Hb< 12g/dl in women ⁵. Anemia in CKD can occur due to factors such as deficiency of iron, vitamin B12, folic acid, shortened lifespan of RBCs, blood loss, inflammation, hyperparathyroidism and hypothyroidism ^{1, 3}. However, decreased production of erythropoietin (EPO), a hormone synthesized and secreted by the interstitial cells of kidney, which stimulates the production of red blood cells (RBCs), is a major factor causing anemia in CKD ⁶. Anemia is more prevalent in people with CKD when compared to the general population ⁷. Further, as the severity of CKD increases, severity of anemia also worsens. The prevalence of anemia has been shown to increase manifold from stage 1 to stage 5 of CKD ^{1, 4, 7, 8}.

Patients with CKD associated anemia may experience weakness, fatigue, dyspnea, cognitive impairment and sleep disturbances and is associated with a higher risk of CKD progression, cardiovascular co-morbidity and mortality. Blood transfusions were the major mode of treatment for such patients prior to the discovery of ESAs ⁶. Though blood transfusions may lead to improvement in symptoms of anemia immediately, repeated blood transfusions are known to cause iron overload and other associated risks such as transfusion reactions and allosensitization, which limit potential kidney transplantation ⁷. Various types of ESAs have been launched in the pharma market for the treatment of anemia ^{8, 9}. This review article discusses the treatment of CKD associated anemia using various ESAs and also focuses on the emerging ESA therapies.

Discovery of EPO

EPO deficiency, as the main cause of anemia in CKD, was first hypothesized in 1950. In the late 1980s, purification and cloning methods were developed to carry out immunoassays for quantifying the levels of EPO in blood ¹⁰. The first Human EPO was isolated from the urine of patients with a plastic anemia in 1977 ¹¹. Thereafter, the identification of the EPO gene and its cloning led to the development of recombinant human EPO (rHuEPO). Recombinant EPOs are man-made versions of natural EPO, also known as ESA. Discovery of ESAs was a turning point in the management of anemia. Exogenous replacement of EPO by rHuEPO, along with iron, became a standard of care for the treatment of anemia in patients with CKD. It not only improved the quality of life but also reduced the

mortality rates associated with CKD associated anemia

Mechanism of Action

Conventional ESAs act through different pathways and cause conformational changes. The mechanism of action of ESAs is shown in Figure 1. The basic mechanisms through which ESAs show their action are described below.

a) Phosphorylation: EPO binds to the EPO receptor and causes phosphorylation of associated JAK2 molecules, STAT5, PI3-Kinase and IkB molecules, which results in activation of genes encoding anti-apoptotic molecules and inactivation of pro-apoptotic molecules ⁹.

b) Blocking of SMAD Pathway: The SMAD pathway is primarily involved in Hepcidin transcription. Activin traps bind to activin, preventing it from binding to endogenous receptors, thereby blocking the SMAD pathway. BMP6 monoclonal antibodies prevent phosphorylation of the SMAD molecule which also results in blocking of the SMAD pathway. Both these mechanisms cause inhibition of hepcidin production ¹³.

c) Stabilization of Hypoxia Inducible Factor (HIF): HIF is involved in regulation of EPO levels through EPO gene expression. Propyl hydroxylase inhibitors (PHIs) prevent degradation of HIF and cause stabilization of HIF molecule thereby increasing EPO production ^{14, 15}.

d) GATA Inhibition: GATA negatively regulates hypoxia-inducible factor-1 (HIF-1), which regulates EPO gene expression. GATA inhibitors decrease the binding capacity of GATA molecule thereby sparing HIF and resulting in increasing production of EPO ¹⁶.

e) Pleiotropic effects of ESA: ESA also shows some pleiotropic effects by binding to the EPO receptor and triggering various cellular processes that include progenitor stem cell development, cellular integrity, and angiogenesis. This makes it a potential agent to provide organ protection by inhibiting apoptosis and amelioration of inflammation. ESA can protect organs via a hematopoiesis dependent and independent manner¹⁷. The pleiotropic effects of ESA are studied in central nervous system, cardiovascular system and in renal system. The nephroprotective effects of EPO are achieved by mechanisms such as reduction of oxidative stress, apoptosis, and ischemic/reperfusion injury, boosting vascular repair, or balance of the inflammatory response with subsequent reduction of glomerular and tubular fibrosis ¹⁸. EPO can also cross the blood-brain barrier, thereby providing neuroprotection by limiting damage to the central nervous system following injury ¹⁹.

Currently Available ESAs

The first generation ESAs include recombinant human EPOs, like epoetin alfa and epoetin beta, which have been in clinical use for overthree decades. The amino acid sequence of both these molecules is identical, with a minor difference being in their glycosylation pattern. Though they are highly potent, they have a short half-life of 6 to 8 h, resulting in need for administration of two to three injections weekly ²⁰. Other epoetins include epoetin omega, epoetin delta, and other biosimilars. The discovery that a greater number of sialic acid residues in the recombinant human EPO molecule increases the circulating half-life, led to the development of the second generation of ESAs, which includes darbepoetin alfa. It supports a maximum of 22 sialic acid residues, compared to recombinant or endogenous EPO, which support a maximum of 14 sialic acid residues ⁶. These molecular modifications resulted in greater metabolic stability and a three-fold increase in the half-life of darbepoetin alfa which has allowed for less frequent dosing, with most patients receiving injections once weekly or once every

two weeks ²¹. Though the binding affinity of darbepoetin alfa for the EPO receptor is less than that for natural or recombinant EPO, the benefit of greater stability in vivo shown by darbepoetin alfa, outweighs this minor disadvantage. Integration of the EPO molecule with a large methoxy polyethyleneglycol polymer chain resulted in the synthesis of CERA (Continuous Erythropoietin Receptor Activator), a third generation ESA. It has a prolonged half life of around 130 h, enabling it to be administered once every 2 weeks and once every month ²². USFDA approved CERA for sale in USA in November 2007. The European Agency for the Evaluation of Medicinal Products (EMEA) recommended and approved its salein July 2007. Following the approval, CERA was made available in Austria, Sweden, Germany, the UK and Norway²³. Currently, CERA is licensed for use in the treatment of anemia associated with chronic renal failure, including patients on dialysis and not on dialysis. It is not approved for the treatment of anemia associated with cancer chemotherapy 23 .

ESA use in Clinical Practice and Various Studies of ESA

The usage of ESA in clinical practice in patients with CKD largely depends on the baseline Hb levels. As per the recommendations of National Anemia Action Council and the World Health Organization, in adults and children aged <15 years, a diagnosis of anemia is confirmed if Hblevel is <13g/dL in men and <12g/dL in women. In children aged 0.5 to 5 years, Hb level <11g/dL, in children aged 5 to 12 years, Hb level <11.5g/dL and in children aged 12 to 15 years, Hb level of <12g/dL, is considered as anemia ^{24, 25}. The first line of therapy to treat CKD associated anemia, involves administration of oral or parenteral iron and the second line of treatment involves the administration of either

intravenous or subcutaneous ESAs. Initial ESA dose is dependent upon Hb concentration, body weight and clinical circumstances. It is necessary to re-evaluate the ESA dose if the patient suffers an ESA-related adverse event or has an acute or progressive illness that may cause ESA hypo-responsiveness. The details of management of CKD associated anemia using ESA are shown in **Figure 2** and the dosing details are included in **Table 2**.

In early 1990s, many clinical studies were conducted to understand the usefulness of EPO in improving Hb levels and quality of life in patients undergoing hemodialysis. The first such trial using EPO was the Canadian group of EPO (CanEPO) study conducted in 118 patients in 1990. The patients were randomized into three groups; placebo, low erythropoietin group (targeting a Hb-concentration of 9.5-11.0 g/dL) and high erythropoietin group (targeting a Hb-concentration of 11.5-13.0 g/dL). Results reported that the mean Hb-levels of 7.4 g/dL, 10.2 g/dL and 11.7 g/dL respectively, were achieved at 6 months. Patients who were administered erythropoietin were appreciably less fatigued, complained of less severe physical symptoms, and had moderate improvements in exercise tolerance and depression compared to placebo group ²⁶. Other landmark studies of ESA molecules in the last few decades are discussed in Table3.

In 1998, the United States Normal Hematocrit Cardiac Trial (NHCT) was carried out to evaluate the benefits and risks of normalizing hematocrit levels in patients with cardiac disease on dialysis. Group 1 received increasing doses of epoetin to achieve and maintain 42% hematocrit and group 2 received doses of epoetin sufficient to maintain a 30% hematocrit. After 29 months, 183 deaths and 19 nonfatal myocardial infarctions were reported in the normal-hematocrit group and 150 deaths and 14 nonfatal myocardial infarctions were reported in the low-hematocrit group. Additionally, the mortality rates decreased with increasing hematocrit values in both the groups. The patients in the normal-hematocrit group required intravenous iron dextran more frequently than those in the low-hematocrit group and had a decline in the adequacy of dialysis. Therefore the trial concluded that it is not recommended to raise the hematocrit to 42% in patients with congestive heart failure or ischemic heart disease undergoing dialysis ²⁷.

In the **Correction of Hemoglobin and Outcomes in Renal Insufficiency (CHOIR) trial**, it was assessed whether the use of recombinant erythropoietin (epoetin alfa) to achieve a higher hemoglobin level (13.5 g/dL) would decrease the risk of complications, compared to a lower hemoglobin level (11.3 g/dL) in patients with CKD. The outcome of this multi-centric trial in United States showed increased risk and no incremental improvement in the quality of life with a higher hemoglobin target ²⁸.

In 2000-2004, a multi-centric, **Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE)** trial was conducted in 22 countries to evaluate whether the complete correction of anemia in patients with stage 3 or 4 CKD improves cardiovascular outcomes as compared with partial correction of anemia. No significant difference was found in the combined incidence of adverse events between the two groups, but hypertensive episodes and headaches were more prevalent in Group 1 (complete correction of anemia). Though general health and physical function improved significantly, dialysis was required in more patients in Group 1 than in Group 2²⁹.

A double blind, placebo controlled, Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT) (2004-2007) involved 4038 patients with anemia, chronic kidney disease not on dialysis and type 2 diabetes. The active treatment arm comprised darbepoetin alfa given subcutaneously with the aim of achieving Hb values >13 g/dL. Administration of darbepoetin alfa did not reduce the risk of death or cardiovascular event or renal event. Further, there was an increased risk of stroke in these patients. The requirement of blood transfusions was lower in the group treated with darbepoetin ³⁰.

It is essential for patients receiving ESA to have adequate iron stores, as there will be improvement in the hemoglobin levels only when there is a sufficient iron available for red cell production. Results from the Dialysis Patients' Response to IV Iron with Elevated Ferritin (DRIVE) study, which was conducted across 37 sites in the United States, reinforces this statement. In this study, 134 patients were randomized to receive 125 mg of ferric gluconate versus no iron. Levels of hemoglobin increased at a faster rate and to a higher level in the ferric gluconate group compared to no iron therapy ³¹. Similarly, Macdougall et al (2019) assessed the safety and efficacy of a high-dose regimen of intravenous iron administered proactively, as compared with a low-dose regimen of intravenous iron administered reactively, in patients undergoing hemodialysis in the Proactive IV Iron Therapy in Haemodialysis Patients (PIVOTAL) trial. They found that the high-dose regimen was superior to the low-dose regimen and resulted in lower dose requirement of ESAs ³².

Newer ESAs

Several new combinations of molecules are currently undergoing preclinical and clinical trials. Synthetic Erythropoiesis Proteins (SEP) is one of them. It was manufactured using solid-phase peptide synthesis and branched precision polymer constructs. It stimulates erythropoiesis by activating the EPO receptor and has a longer circulating half-life than EPO ³³. Another fusion protein combining EPO and granulocyte macrophage colony stimulating factor (GM-CSF) has been created, with the rationale that GM-CSF is required for early erythropoiesis ²⁰.

Epoetin alfa has been combined with a polysialic acid (PSA) derived from Escherichia coli. This PSA-EPO fusion protein allows once monthly administration. EPO has also been combined with hybrid human crystallizable fragment (Fc) molecules, by Genexine (Seongnam, Korea), thereby increasing its stability and plasma half-life ^{34, 35}.

EPO mimetics are another class of synthetic polypeptides. Though they act upon the EPO receptor, they show no resemblance to EPO or ESAs. Peginesatide was the first EPO mimetic developed by Affymax. It is a peptide based pegylated ESA which was licensed for use in the USA in 2012. Later, it was discontinued due to hypersensitivity reactions occurring when administered through the IV route 36, 37. A combination of erythropoietin mimetic peptides (EMP) and immunoglobulin G (IgG) led to the production of CNTO 528 and CNTO 530 fusion proteins which are still in the pre-clinical testing phase ³⁸. Table 1 enlists the various types of ESAs, their history and market approval details 12, 36, 39, 40

Limitations of the above protein based therapies include immunogenicity (pure red cell aplasia caused by anti EPO antibodies); storage and stability; and administration conditions. They must be stored at temperatures of approximately 4°C, and must be administrated intravenously or subcutaneously ⁹. To overcome these limitations, various potential strategies have been developed in the formulation techniques to improve the efficacy and delivery of ESA molecules. The various new strategies are discussed below.

a) Activin Traps

Activins belong to a large family of proteins known as transforming growth factor- β (TGF- β). It forms a complex between the ligand, type I and type II receptors. This complex eventually phosphorylates the Small Mother Against Decapentaplegic homologue (SMAD) proteins which regulate gene expression in concert with other transcription factors ⁴¹. Sotatercept (ACE-011) is a novel recombinant fusion protein developed by Acceleron Pharma and Celgene Corporation by combining an extracellular chain of the activin receptor IIA and the Fc domain of human IgG1³⁴. The drug binds to activin, preventing it from binding to endogenous receptors and blocks the SMAD pathway. By blocking this pathway which is involved in hepcidin synthesis and iron homeostasis, sotatercept causes increase in Erythropoiesis ¹³.

b) Hypoxia Inducible Factor- Propyl Hydroxylase Inhibitors (HIF-PHIs)

A novel therapeutic approach to correct anemia in patients with CKD is the induction of EPO synthesis by stabilizing HIFs with PHI. HIF is a heterodimer composed of HIF- α and HIF- β subunits. HIF- β is constitutively expressed, whereas HIF- α is modulated by oxygen tension via a family of HIF-propyl hydroxylases (PHD) regulating its degradation by the proteasome. During hypoxia, HIF plays an important role in regulating the levels of EPO, glucose transporter-1, vascular endothelial growth factor (VEGF), and pyruvate dehydrogenase kinases 1 and 4. HIF stabilizers also called PHIs, are small-molecule oral agents that stabilize HIF and prevent its degradation, allowing the stimulation of EPO gene expression in the kidneys ^{14, 15}. Three oral HIF-PHIs, daprodustat, roxadustat and vadadustat, are being studied in phase III of clinical trials. Among them, roxadustat is licensed for the treatment of renal anemia in China⁴². Clinical studies have proved that HIF stabilizers adequately increase Hb levels in both non-dialysis and dialysis CKD patients without causing serious adverse effects ⁴³⁻⁴⁵. HIF stabilizers have additional advantages of lipid lowering, improving iron utilization, lowering blood pressure, ischemia protection and improving neovascularization. However, since it is associated with the an increased risk of growth of renal cysts and tumors, increased pulmonary arterial pressure and increased vascular calcification, its clinical use should be judicious and monitored ³⁴.

c) EPO Gene Therapy

Gene therapy is a novel therapeutic approach for the treatment of monogenetic diseases, using non-viral or viral delivery systems. It involves delivery of therapeutic proteins in the body. Anemia in CKD is treated with rHuEPO. However, the short half-life of the currently available recombinant products, their potential to cause antibodies against rHuEPO, and their high cost is one of the triggering factors to include gene therapy in the management of anemia. EPO gene therapy is a useful technique to overcome the harmful effects of excessive dosage of EPO in blood. The ideal level of EPO to provide the most efficient erythropoiesis is approximately 40 to 200mU/mL above the baseline levels. Higher levels lead to rHuEPO wastage, and lower levels cause inefficient erythropoiesis ⁴⁶. Gene therapy helps to generate low but continuous release of EPO in blood circulation. It not only improves the efficiency of Erythropoiesis but also avoids the risk of forming antibodies against recombinant proteins ⁹. The technique

produces rHuEPO from human cells, which directly secretes the protein in the body without any additional formulation or manufacturing ⁴⁶. Various gene delivery systems for EPO gene therapy investigated include; injection of naked DNA ⁴⁷, adenovirus transfection ⁴⁸, use of artificial human chromosomes ⁴⁹ and transplantation of autologous or allogeneic cells manipulated ex vivo ⁴⁶.

d) GATA Inhibition

GATA inhibition is a genetic approach to increase the production of EPO thereby restoring hemoglobin concentrations in patients with CKD. The GATA family consists of six transcription factors, GATA 1 through 6. EPO gene expression is under the control of HIF-1 which is negatively regulated by GATA. Interleukin 1 (IL-1 β) and tumor necrosis factor (TNF- α), increase the binding activity of GATA and inhibit EPO promoter activity. Preclinical studies for GATA inhibitor molecules K-7174 and K-11706 are underway to establish its further safety and efficacy in humans. Studies have shown that these molecules given intra-peritoneally and orally to mice respectively reversed the decrease in hemoglobin and serum EPO concentrations, reticulocyte counts, and number of erythroid colony-forming units (CFU-Es) induced by IL-1 β and TNF- α ¹⁶.

Figure 1 Mechanism of Action of ESAs

BMP=Bone Morphogenic Protein, EPO=Erythropoietin, HIF=Hypoxia Inducible Factor, JAK=Janus Kinases, PHI=Propyl Hydroxylase Inhibitors, PI=Phosphorylated Phosphatidyl Inositol, SMAD=Small Mother Against Decapentaplegic homologue, STAT=Signal Transducer and Activator of Transcription.

 $\bar{P}_{age}276$

Figure 2: Management of CKD-Associated Anemia using ESA

CKD=Chronic kidney disease, ESA=Erythropoiesis stimulating agent, Hb=Hemoglobin, HD=Hemodialysis, IV=Intravenous, ND=Non-dialysis, PD=Peritoneal dialysis, ROA=Route of administration, SC=Subcutaneous, TSAT=Transferrin saturation.

Source: KDIGO recommendations: Anemia in CKD.

Table 1: Types of Erythropoietin Stimulating Agents (ESA)

		International	Trade Name	Year of	Countries Licensed in
		Nonproprietary Name		Approval	
		Epoetin alfa	Epogen®	1989	USA
			Eprex®	1988	USA, European Union, Other regions
uc			Procrit®	1989	USA
eratio		Epoetin beta	Recormon®	1990	European Union
Gene		Epoetin omega	Epomax®	1990	South Africa, Other regions
first			Hemax®		
	u	Epoetin beta	NeoRecormon®	1997	European Union, Other regions
pu	ratic	Darbepoetin alfa	Aranesp®	2001	USA, European Union Australia, Asia
Seco	Gene	Epoetin delta	Dynepo®	2002	Marketing stopped in 2009 ^g
	<u> </u>	Methoxy	Mircera®	2007	USA, European Union
		polyethyleneglycol epoetin			
		beta (CERA)			
		Epoetin alfa(biosimilar)	Binocrit®	2007	European Union
			Abseamed®		
			Epoetin Alfa		
			Hexal®		
ion		Epoetin zeta(biosimilar)	RetacritTM	2007	European Union
lerat			SilapoTM		Other regions
Ger		Epoetin theta	Biopoin®	2009	European Union
Chird			Eporatio®		
		SyntheticErythropoiesis	R 1516	-	Phase-I clinical trials in anemia in USA
		Protein (SEP)	(Gryphon		(unspecified route)
			Therapeutics)		
sion		Recombinant Granulocyte	PF-11	-	No recent reports of development identified
Fus		Macrophage Colony	(Profarma)		for research development in Cancer in
	sins	StimulatingFactor (GM-			Lithuania (Parenteral)
PO Tote		CSF)			

 $P_{age}2$

	Recombinant		FC EPO	-		Discontinued - Phase-I for and	emia in
	erythropoietin protein	fusion				Switzerland (Parenteral)	
	Hematide -Peptide	based	Peginesatide	2012		USA.	
6	pegylated ESA		(AF 37702)			Discontinued now	
netics							
Min	CNTO 528			-		No recent reports of development is	identified
PO						for phase-I development in anemia in	n USA
	Small Molecule ESA	ł	Roxadustat	2018	and	China for DD-CKD and ND-CKD	
			(FG-2216)	2019			
			Roxadustat -	-		Phase IIIb trial ongoing (NCT04	4484857,
oitor			FibroGen			NCT04484857)	
Inhil			(FG-4592)				
IHd			Molidustat (BAY-	-		Phase III development ongoing i	in Japan
HIF-J			85-3934)			(NCT03350321, NCT03350347)	
GIVE C		DD	D'1'1 1 1			sisting EQA Emotions of a Quincellati	

ND=Non-dialysis.

Table 2: Dosing Details of Erythropoietin Stimulating Agents (ESA)

Name	Dosage forms and	Starting Dose	Dose Adjustment	Maintenance Dose
	strengths available			
Epoetin	Epogen:	Adults: 50-100	CKD-DD: If the Hb level	To maintain the Hb between 10
alfa	Single dose vial -	Units/kg 3 times	approaches or exceeds 11 g/dL,	to 12 g/dL, a dose of 75 -100
Ref (50)	2,000;3,000; 4,000	weekly IV or	reduce or interrupt the dose.	Units/kg 3 times weekly.
	and 10,000	SC.	CKD-ND: If the Hb level	
	Units/mL.		exceeds 10 g/dL, reduce or	
		Children: 50	interrupt the dose and use the	
	Multi dose vial -	Units/kg 3 times	lowest dose sufficient to reduce	
	20,000 Units/2 mL	weekly IV or	the need for RBC transfusion.	
	(10,000 Units/mL)	SC.	Children:If the Hb level	
	and 20,000		approaches or exceeds 12 g/dL,	
	Units/mL.		reduce or interrupt the dose.	
Epoetin	Recormon:	SC: 3 x 20	SC: Dosage may be increased	To maintain Hb between 10-12

 $\frac{1}{2}$

.

 $\frac{1}{P_{age}}279$

beta	Lyophilisate	IU/kg body	every 4 weeks by 3 x 20 IU/kg	g/dl, the dosage is initially
Ref (51)	powder and	weight per	per week if the increase of Hb	reduced to half of the
	solvent for	week.	is not adequate (< 0.25 g/dl per	previously administered dose.
	injection: 50,000		week).	Subsequent dose is adjusted at
	IU = 415	IV: 3 x 40 IU/kg	IV:Dosage may be raised after	intervals of 2-4 weeks.
	micrograms	per week	4 weeks to 80 IU/kg three	SC: Weekly dose can be given
	epoetin beta / vial		times per week and by further	as one injection per week or in
	+ 10 ml solvent.		increments of 20 IU/kg if	divided doses 3-7 times per
			needed, three times per week,	week. If patient is stable on a
	Pre-filled syringes:		at monthly intervals.	once weekly dose, dose may be
	500, 2000, 3000,			switched to once every two
	4000, 5000, 6000,			weeks.
	10,000, 20,000,			
	30,000 IU.			
Darbepoeti	Aranesp:	CKD-DD:	CKD-DD:IfHb level	Lowest dose that will maintain
n alfa	Single-dose vials:	0.45 mcg/kg IV	approaches or exceeds 11 g/dL,	a Hb level sufficient to reduce
Ref (52)	25, 40, 60, 100,	or SC weekly or	reduce or interrupt the dose.	the need for RBC transfusions
	200, 300, and 500	0.75 mcg/kg IV		should be used.
	mcg/1 mL, and	or SC every 2		
	150 mcg/0.75 mL.	weeks.		
	Single-dose	CKD-ND:	CKD-ND:If Hb level exceeds	
	prefilled syringes:	0.45 mcg/kg IV	10 g/dL, reduce or interrupt the	
	25 mcg/0.42mL,	or SC at 4 week	dose and use the lowest dose	
	40 mcg/0.4mL, 60	interval.	sufficient to reduce the need for	
	mcg/0.3 mL, 100		RBC transfusions.	
	mcg/0.5 mL, 150			
	mcg/0.3 mL, 200			
	mcg/0.4 mL, 300			
	mcg/0.6 mL, and			
	500 mcg/1 mL			
Methoxy	MIRCERA:	CKD-DD and	CKD-DD: If Hb level	Lowest dose that will maintain
polyethyle	Single dose	CKD-ND: 0.6	approaches or exceeds 11 g/dL,	aHb level sufficient to reduce
ne glycol	syringes: 30, 50,	mcg/kg body	reduce or interrupt the dose.	the need for RBC transfusions
epoetin	75, 100, 120, 150,	weight	CKD-ND: If Hb level exceeds	should be used.

beta	200, or 250 mcg in	administered as	10 g/dL, reduce or interrupt the	A once monthly dose that is
(CERA)	0.3 mL and 360	a single IV or	dose and use the lowest dose	twice that of everytwo week
Ref: (53)	mcg in 0.6 mL.	SC injection	sufficient to reduce the need for	dose may be given and
		once every two	RBC transfusions.	subsequently titrated as
		weeks.		necessary.

CKD=Chronic Kidney Disease, DD=Dialysis dependent, Hb=Hemoglobin, IV=Intravenous, ND=Non-dialysis, RBC=Red Blood Corpuscles, SC=Subcutaneous.

Table 3: Landmark Studies of Erythropoietin Stimulating Agents (ESA)

Study Name,	Objective	Study Type	Study Design	Study Parameters	Study Outcomes
Author and			(Patients Size,		
Year			`\Groups		
			andInterventio		
			n)		
Dialysis	To assess	Randomized	Patient size	Primary end point: CFB	At 6 week, Hb
Patients'	the	open-label,	N=134	hemoglobin.	increased significantly
Response to IV	efficacy of	controlled,	N1=66 (No	Secondary end point:	more (p=0.028),
Iron with	IV ferric	multicenter	Iron)	percentage of patients who	quickly (p=0.035)and
Elevated	gluconate	trial in 37	N2=68 (1 g of	achieved an increase in Hb \geq	more patients
Ferritin	in anemic	sites across	ferric	2 g/dl, Adverse events.	responded after IV
(DRIVE) study	hemodialy	United	gluconate		iron
	sis patients	States	administered		(p=0.041)compared to
Daniel W.	with high		in 8		control group.IV iron
Coyne (2007)	ferritin and		consecutive		resulted in a greater
(31).	low		125-mg doses)		increase in TSAT than
	transferrin		Intervention:		in control subjects (p<
	saturation		IV Iron +		0.001). Higher epoetin
			Epoetin		dosage resulted in a
					greater CFB in Hb by
					0.5 g/dl (p=0.022).

....

 $\frac{1}{P_{age}}$ 281

Correction of	To assess Randomize	d Patient size	Primary end point:	Around 125 events
Anemia with	if open-label	N=1432	composite of death, MI,	occurred in high Hb
Epoetin Alfa in	achieving trial	N1= 715	hospitalization for	group compared to 97
CKD (CHOIR)	higher Hb	(Received	congestive heart failure	events in the low Hb
	levels has	epoetin alfa to	(without renal replacement	group (p=0.03). There
Ajay K. Singh	beneficial	achieve Hb	therapy), and stroke.	were 65 deaths
(2006)	effects on	level=13.5		(29.3%), 101
(28)	the rate of	g/dl.		hospitalizations for
	cardiovasc	N2=717		congestive heart
	ular events	(Received		failure (45.5%), 25
	and death	epoetin alfa to		MIs (11.3%), and 23
	in CKD	achieve Hb		strokes (10.4%),
	patients.	level=11.3		congestive heart
		g/dl.		failure and MIs
				combined (3.2%) .
				Improvements inQOL
				were similar in both
				the groups.
				e i
Cardiovascular	To assess Randomize	d Patient size	Primary end point: Time to a	Complete correction
Cardiovascular Risk Reduction	To assess Randomize whether , open-lab	d Patient size el N=603	Primary end point: Time to a first cardiovascular event,	Complete correction of anemia did not
Cardiovascular Risk Reduction by Early	To assess Randomize whether , open-lab complete study with	d Patient size el N=603 a N1=301(epoet	Primary end point: Time to a first cardiovascular event, including sudden death, MI,	Complete correction of anemia did not affect the likelihood of
Cardiovascular Risk Reduction by Early Anemia	To assess Randomize whether , open-lab complete study with correction parallel-	d Patient size el N=603 a N1=301(epoet in beta givento	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke,	Complete correction of anemia did not affect the likelihood of a first cardiovascular
Cardiovascular Risk Reduction by Early Anemia Treatment with	To assess Randomize whether , open-lab complete study with correction parallel- of anemia group desi	d Patient size el N=603 a N1=301(epoet in beta givento gn normalize Hb	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack,	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta	To assess Randomize whether , open-lat complete study with correction parallel- of anemia group designing patients	d Patient size el N=603 a N1=301(epoet in beta givento gn normalize Hb values	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial	To assess Randomize whether , open-lat complete study with correction parallel- of anemia group designing in patients with stage	d Patient size el N=603 a N1=301(epoet in beta givento gn normalize Hb values (Hb=13-15	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial	To assess Randomize whether , open-lab complete study with correction parallel- of anemia group designing in patients with stage 3 or 4	d Patient size el N=603 a N1=301(epoet in beta givento gn normalize Hb values (Hb=13-15 g/dl)	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours or more or prolongation of	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in both groups. More
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial	To assess Randomize whether , open-lat complete study with correction parallel- of anemia group desi in patients with stage 3 or 4 CKD	d Patient size el N=603 a N1=301(epoet in beta givento gn normalize Hb values (Hb=13-15 g/dl) N2=302	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours or more or prolongation of hospitalization, complication	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in both groups. More number of patients in
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial	To assess Randomize whether , open-lat complete study with correction parallel- of anemia group designin patients with stage 3 or 4 CKD improves	d Patient size el N=603 a N1=301(epoet in beta givento gn normalize Hb values (Hb=13-15 g/dl) N2=302 (epoetin beta	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours or more or prolongation of hospitalization, complication of peripheral vascular	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in both groups. More number of patients in group 1 required
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial Tilman B. Drüeke (2006)(29)	To assess Randomize whether , open-lat complete study with correction parallel- of anemia group design in patients with stage 3 or 4 CKD improves cardiovasc	d Patient size el N=603 a N1=301(epoet in beta givento gn normalize Hb values (Hb=13-15 g/dl) N2=302 (epoetin beta given to	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours or more or prolongation of hospitalization, complication of peripheral vascular disease, or cardiac	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in both groups. More number of patients in group 1 required dialysis than in group
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial Tilman B. Drüeke (2006)(29)	To assess Randomize whether , open-lab complete study with correction parallel- of anemia group desi in patients with stage 3 or 4 CKD improves cardiovasc ular	d Patient size el N=603 a N1=301(epoet in beta givento gn normalize Hb values (Hb=13-15 g/dl) N2=302 (epoetin beta given to partially	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours or more or prolongation of hospitalization, complication of peripheral vascular disease, or cardiac arrhythmia resulting in	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in both groups. More number of patients in group 1 required dialysis than in group 2 (127 vs. 111,
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial Tilman B. Drüeke (2006)(29)	To assess Randomize whether , open-lab complete study with correction parallel- of anemia group desi in patients with stage 3 or 4 CKD improves cardiovasc ular outcomes	d Patient size el N=603 a N1=301(epoet in beta givento normalize Hb values (Hb=13-15 g/dl) N2=302 (epoetin beta given to partially correct anemia	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours or more or prolongation of hospitalization, complication of peripheral vascular disease, or cardiac arrhythmia resulting in hospitalization for 24 hours	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in both groups. More number of patients in group 1 required dialysis than in group 2 (127 vs. 111, p=0.03). General
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial Tilman B. Drüeke (2006)(29)	To assess Randomize whether , open-lat complete study with correction parallel- of anemia group desi in patients with stage 3 or 4 CKD improves cardiovasc ular outcomes compared	d Patient size el N=603 a N1=301(epoet in beta givento normalize Hb values (Hb=13-15 g/dl) N2=302 (epoetin beta given to partially correct anemia (Hb=10.5-11.5	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours or more or prolongation of hospitalization, complication of peripheral vascular disease, or cardiac arrhythmia resulting in hospitalization for 24 hours or more.	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in both groups. More number of patients in group 1 required dialysis than in group 2 (127 vs. 111, p=0.03). General health and physical
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial Tilman B. Drüeke (2006)(29)	To assess Randomize whether , open-lak complete study with correction parallel- of anemia group desi in patients with stage 3 or 4 CKD improves cardiovasc ular outcomes compared to partial	d Patient size el N=603 a N1=301(epoet in beta givento gn normalize Hb values (Hb=13-15 g/dl) N2=302 (epoetin beta given to partially correct anemia (Hb=10.5-11.5 g/dl) and it is	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours or more or prolongation of hospitalization, complication of peripheral vascular disease, or cardiac arrhythmia resulting in hospitalization for 24 hours or more. Secondary end points: Left	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in both groups. More number of patients in group 1 required dialysis than in group 2 (127 vs. 111, p=0.03). General health and physical function improved
Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE) trial Tilman B. Drüeke (2006)(29)	To assess Randomize whether , open-lak complete study with correction parallel- of anemia group design in patients with stage 3 or 4 CKD improves cardiovasc ular outcomes compared to partial correction	d Patient size el N=603 a N1=301(epoet in beta givento normalize Hb values (Hb=13-15 g/dl) N2=302 (epoetin beta given to partially correct anemia (Hb=10.5-11.5 g/dl) and it is given only	Primary end point: Time to a first cardiovascular event, including sudden death, MI, acute heart failure, stroke, transient ischemic attack, angina pectoris resulting in hospitalization for 24 hours or more or prolongation of hospitalization, complication of peripheral vascular disease, or cardiac arrhythmia resulting in hospitalization for 24 hours or more. Secondary end points: Left ventricular mass index, QOL	Complete correction of anemia did not affect the likelihood of a first cardiovascular event (p=0.20). Left ventricular mass index remained stable in both groups. More number of patients in group 1 required dialysis than in group 2 (127 vs. 111, p=0.03). General health and physical function improved significantly (p=0.003

...........

			levels fall	death from any cause, death	respectively, in group
			below 10.5	from cardiovascular causes,	1 vs group 2). No
			g/dl.	and hospitalization.	difference was found
			C	•	in the incidence of
					adverse events.
The United	То	Randomized	Patient size	Primary end point: Time to	Around 183 deaths
States Normal	examine	prospective.	N=1233	death or a first nonfatal MI	and 19 first nonfatal
Hematocrit	benefits	open-label	N=618		MIs were reported in
Cardiac Trial	and risks	trial	(Received		the normal hematocrit
(NHCT)	of normal		increasing		group and 150 deaths
	hematocrit		doses of		and 14 nonfatal MIs
Anatole	in patients		epoetin to		were reported in the
Besarab	with		maintain a		low hematocrit group.
(1998)(27)	cardiac		hematocrit of		The mortality rates
	disease		42%)		decreased with
	undergoing		N=615		increasing hematocrit
	hemodialy		(Received		values in both groups.
	sis and		doses of		The normal hematocrit
	receiving		epoetin		group had a decline in
	epoetin,		sufficient to		the adequacy of
	compared		maintain a		dialysis and received
	to low		hematocrit of		IV iron dextran more
	hematocrit		30%)		often than those in the
	values		Intervention:		low hematocrit group.
			Epoeitin		
Time to	То	Randomized	Patient Size	Primary end points:	Death or a
reconsider	determine	, double-	N=4038	Composite outcomes of	cardiovascular event
evidence for	whether	blind,	N1=2012	death or a cardiovascular	occurred in 632
anemia	increasing	placebo-	administration	event (nonfatal MI,	patients assigned to
treatment	the Hb	controlled	of	congestive heart failure,	darbepoetinalfa and
(TREAT)	levels	trial,	darbepoetinalf	stroke, or hospitalization for	602 patients assigned
	would	multicenter	a to achieve	myocardial ischemia) and of	to placebo (p=0.41).
Marc. A Pfeffer	lower the	conducted at	aHb level of	death or end-stage renal	Death or end-stage
et al.	rates of	623 sites in	13g/dl.	disease.	renal disease occurred
2009,	death,	24 countries	N2=2026		in 652 patients

.

(30)	cardiovasc	patients in		assigned to
	ular	placebo: Hb		darbepoetinalfa and
	events, and	level of		618 patients assigned
	end-stage	≥9.0g/dl		to placebo (p=0.29).
	renal	Intervention		Fatal or nonfatal
	disease.	ESA used:		stroke occurred in 101
		darbepoetinalf		patients assigned to
		a		darbepoetinalfa and 53
				patients assigned to
				placebo (p<0.001).
PRIMAVERA	To assess Randomiz	ed N=400	Primary endpoint:	Mean eGFR was 40.7
Fliser, 2017(54)	whether single blin	d, N1= 115	Annual change in eGFR	mL/ min/1.73 m^2 vs
	early 24- more	th (CERA),	from baseline to month 24.	$39.8 \text{ mL/min/1.73 } \text{m}^2$
	initiation trial	N2= 120	Secondary endpoints:	at baseline for CERA
	of ESA	(placebo)	Changes in UACR, serum	and placebo,
	treatment		cystatin C and serum	respectively, and 39.0
	could	Intervention:	creatinine from baseline.	g/dL vs 39.7 g/dL at
	delay the	Low dose		the final visit
	progressio	CERA		(p>0.05). Adverse
	n of renal	(monthly dose		events occurred in
	function	30–75 µg)		22.0% and 16.2% of
	loss			patients in CERA or
				placebo group
				respectively, and
				adverse events led to
				study drug
				discontinuation in
				11.0% and 8.5% of
				patients.

BP=Blood Pressure,CFB=Change from baseline, CKD=Chronic Kidney Disease, CERA=Continuous Erythropoiesis Receptor Activator, eGFR=estimated Glomerular Filtration Rate, ESA=Erythropoesis Stimulating Agents, Hb=Hemoglobin, IV=Intravenous, MI=Myocardial Infarction, QOL=Quality of life, RR=Relative Risk, RRT=Renal Replacement Therapy, TSAT=Transferrin Saturation, UACR=Urinary Albumin to Creatinine Ratio.

 $\bar{P}_{age}283$

Conclusion

Management of CKD associated anemia has greatly advanced in the last few decades due to the discovery of ESAs. Various studies have shown that the use of ESAs significantly improve anemia of CKD. Recombinant ESAs such as epoetin, darbepoetin alfa and CERA are the currently available ESAs. In recent years, newer molecules are on the horizons which have better molecular stability, solubility, in vivo activity, serum half-life and immunogenicity. Undoubtedly, ESAs have changed the treatment options and reduced the necessity of blood transfusions to a great extent in patients with CKD associated anemia. Besides improving the Hb levels, ESA molecules have also been shown to retard the progression of CKD, reduce cardiovascular events and induce pleiotropic effects in other organs.

References

- Sathyan S, George S, Vijayan P. Prevalence of anemia and cardiovascular diseases in chronic kidney disease patients: A single tertiary care centre study. International Journal of Advances in Medicine. 2017;4(1):247-51.
- Alani H, Tamimi A, Tamimi N. Cardiovascular comorbidity in chronic kidney disease: Current knowledge and future research needs. World journal of nephrology. 2014;3(4):156.
- Kaze FF, Kengne A, Mambap AT, Halle M-P, Mbanya D, Ashuntantang G. Anemia in patients on chronic hemodialysis in Cameroon: prevalence, characteristics and management in low resources setting. African health sciences. 2015;15(1):253-60.
- Sofue T, Nakagawa N, Kanda E, Nagasu H, Matsushita K, Nangaku M ,et al. Prevalence of anemia in patients with chronic kidney disease in Japan: A nationwide, cross-sectional cohort study

using data from the Japan Chronic Kidney Disease Database (J-CKD-DB). PloS one. 2020;15(7):e0236132.

- Drüeke TB, Parfrey PS. Summary of the KDIGO guideline on anemia and comment: reading between the (guide) line (s). Kidney international. 2012;82(9):952-60.
- Kiss Z, Elliott S, Jedynasty K, Tesar V, Szegedi J. Discovery and basic pharmacology of erythropoiesisstimulating agents (ESAs), including the hyperglycosylated ESA, darbepoetin alfa: an update of the rationale and clinical impact. European journal of clinical pharmacology. 2010;66(4):331-40.
- Spinowitz B, Pecoits-Filho R, Winkelmayer WC, Pergola PE, Rochette S, Thompson-Leduc P ,et al. Economic and quality of life burden of anemia on patients with CKD on dialysis: a systematic review. Journal of Medical Economics. 2019;22(6):593-604.
- Rodelo Ceballos J, Páez-Canro C, Urrútia G, Yomayusa González N, Ariza García A, Loza Munárriz C ,et al. Early versus delayed erythropoietin for the anaemia of end-stage kidney disease. 2015;
- Elliott S, Pham E, Macdougall IC. Erythropoietins: a common mechanism of action. Experimental hematology. 2008;36(12):1573-84.
- Babitt JL, Lin HY. Mechanisms of anemia in CKD. Journal of the American Society of Nephrology. 2012;23(10):1631-4.
- Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. Journal of Biological Chemistry. 1977;252(15):5558-64.

- Kalantar-Zadeh K. History of erythropoiesisstimulating agents, the development of biosimilars, and the future of anemia treatment in nephrology. American journal of nephrology. 2017;45(3):235-47.
- Del Vecchio L, Locatelli F. New treatment approaches in chronic kidney disease-associated anaemia. Expert opinion on biological therapy. 2014;14(5):687-96.
- Sanghani NS, Haase VH. HIF-prolyl hydroxylase inhibitors in renal anemia: current clinical experience. Advances in chronic kidney disease. 2019;26(4):253.
- 15. Hasegawa S, Tanaka T, Nangaku M. Hypoxiainducible factor stabilizers for treating anemia of chronic kidney disease. Current opinion in nephrology and hypertension. 2018;27(5):331-8.
- 16. Nakano Y, Imagawa S, Matsumoto K, Stockmann C, Obara N, Suzuki N ,et al. Oral administration of K-11706 inhibits GATA binding activity, enhances hypoxia-inducible factor 1 binding activity, and restores indicators in an in vivo mouse model of anemia of chronic disease. Blood. 2004;104(13):4300-7.
- 17. Nangaku M, Fliser D. Erythropoiesis-stimulating agents: past and future. Elsevier; 2007.
- 18. Bartnicki P, Kowalczyk M, Rysz J. The influence of the pleiotropic action of erythropoietin and its

derivatives on nephroprotection. Medical science monitor: international medical journal of experimental and clinical research. 2013;19(599.

- Brines ML, Ghezzi P, Keenan S, Agnello D, De Lanerolle NC, Cerami C ,et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proceedings of the National Academy of Sciences. 2000;97(19):10526-31.
- Macdougall IC. Novel erythropoiesis-stimulating agents: a new era in anemia management. Clinical Journal of the American Society of Nephrology. 2008;3(1):200-7.
- Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L ,et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nature biotechnology. 2003;21(4):414-21.
- 22. Macdougall IC, Robson R, Opatrna S, Liogier X, Pannier A, Jordan P ,et al. Pharmacokinetics and pharmacodynamics of intravenous and subcutaneous continuous erythropoietin receptor activator (CERA) in patients with chronic kidney disease. Clinical Journal of the American Society of Nephrology. 2006;1(6):1211-5.
- 23. Topf JM. CERA: third-generation erythropoiesisstimulating agent. Expert opinion on L pharmacotherapy. 2008;9(5):839-49.

- 24. CDSCO. Centers for Disease Control and Prevention.
 (2012) National Health and Nutrition Examination Survey Analytic and Reporting Guidelines. http://www.cdc.gov/nchs/nhanes/nhanes2003-2004/analytical_guidelines.htm. Last accessed on 03-11-2020. 2012;
- Anaemia ID, Assessment P. Control: A Guide for Programme Managers. World Health Organisation: Geneva, Switzerland. 2001;
- 26. Group CES. Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. BMJ: British Medical Journal. 1990;573-8.
- 27. Besarab A, Bolton WK, Browne JK, Egrie JC, Nissenson AR, Okamoto DM ,et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. New England Journal of Medicine. 1998;339(9):584-90.
- 28. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M ,et al. Correction of anemia with epoetin alfa in chronic kidney disease. New England Journal of Medicine. 2006;355(20):2085-98.
- 29. Drüeke TB, Locatelli F, Clyne N, Eckardt K-U, Macdougall IC, Tsakiris D ,et al. Normalization of hemoglobin level in patients with chronic kidney

disease and anemia. New England Journal of Medicine. 2006;355(20):2071-84.

- 30. Pfeffer MA, Burdmann EA, Chen C-Y, Cooper ME, De Zeeuw D, Eckardt K-U ,et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. New England Journal of Medicine. 2009;361(21):2019-32.
- 31. Coyne DW, Kapoian T, Suki W, Singh AK, Moran JE, Dahl NV ,et al. Ferric gluconate is highly efficacious in anemic hemodialysis patients with high serum ferritin and low transferrin saturation: results of the Dialysis Patients' Response to IV Iron with Elevated Ferritin (DRIVE) Study. Journal of the American Society of Nephrology. 2007;18(3):975-84.
- 32. Macdougall IC, White C, Anker SD, Bhandari S, Farrington K, Kalra PA ,et al. Intravenous iron in patients undergoing maintenance hemodialysis. New England Journal of Medicine. 2019;380(5):447-58.
- 33. Chen S-Y, Cressman S, Mao F, Shao H, Low DW, Beilan HS ,et al. Synthetic erythropoietic proteins: tuning biological performance by site-specific polymer attachment. Chemistry & biology. 2005;12(3):371-83.
- 34. Biggar P, Kim G-H. Treatment of renal anemia: Erythropoiesis stimulating agents and beyond.

Kidney Research and Clinical Practice. 2017;36(3):209.

- 35. NCT02044653. Study to evaluate the efficacy and safety of GX-E2 in the anemic patient diagnosed with chronic kidney disease (CKD) 2014. Available at: https://clinicaltrials.gov/ct2/show/NCT02044653.
- 36. (EMA) EMA. Withdrawal Assessment report for Omontys (INN name: Peginesatide) by Europeon Medicine Agency, EMA/419554/2013. Committee for Medicinal Products for Human Use (CHMP). 2013;
- Bennett CL, Jacob S, Hymes J, Usvyat LA, Maddux FW. Anaphylaxis and hypotension after administration of peginesatide. The New England journal of medicine. 2014;370(21):2055.
- 38. Scully MS, Ort TA, James IE, Bugelski PJ, Makropoulos DA, Deutsch HA ,et al. A novel EPO receptor agonist improves glucose tolerance via glucose uptake in skeletal muscle in a mouse model of diabetes. Experimental Diabetes Research. 2011;2011.
- Jelkmann W. Erythropoiesis stimulating agents and techniques: a challenge for doping analysts. Current medicinal chemistry. 2009;16(10):1236-47.
- Li Z-L, Tu Y, Liu B-C. Treatment of Renal Anemia with Roxadustat: Advantages and Achievement. Kidney Diseases. 2020;6(2):65-73.

- 41. Breda L, Rivella S. Modulators of erythropoiesis: emerging therapies for hemoglobinopathies and disorders of red cell production. Hematology/Oncology Clinics. 2014;28(2):375-86
- 42. Zhong H LW, Lin S, Zhou T. Current and Emerging Drugs in the Treatment of Anemia in Patients with Chronic Kidney Disease . Available from: www.cspsCanada.org. J Pharm Pharm Sci. 2020;23(
- 43. Besarab A, Provenzano R, Hertel J, Zabaneh R, Klaus SJ, Lee T ,et al. Randomized placebocontrolled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrology Dialysis Transplantation. 2015;30(10):1665-73.
- 44. Pergola PE, Spinowitz BS, Hartman CS, Maroni BJ, Haase VH. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysisdependent chronic kidney disease. Kidney international. 2016;90(5):1115-22.
- 45. Akizawa T, Tsubakihara Y, Nangaku M, Endo Y, Nakajima H, Kohno T ,et al. Effects of daprodustat, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. American Journal of Nephrology. 2017;45(2):127-35.

- 46. Lippin Y, Dranitzki-Elhalel M, Brill-Almon E, Mei-Zahav C, Mizrachi S, Liberman Y ,et al. Human erythropoietin gene therapy for patients with chronic renal failure. Blood. 2005;106(7):2280-6.
- 47. Fattori E, Cappelletti M, Zampaglione I, Mennuni C, Calvaruso F, Arcuri M ,et al. Gene electro-transfer of an improved erythropoietin plasmid in mice and non-human primates. The Journal of Gene Medicine: A cross-disciplinary journal for research on the science of gene transfer and its clinical applications. 2005;7(2):228-36.
- 48. Rivera VM, Gao G-p, Grant RL, Schnell MA, Zoltick PW, Rozamus LW ,et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood. 2005;105(4):1424-30.
- 49. Kakeda M HM, Nagata K, Kuroiwa Y, Kakitani M, Katoh M, Oshimura M, et al. Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts. Gene Therapy. 2005;12(852-6.
- 50. Epogen. Product Information leafle (Amgen).
 Available on URL: https://www.accessdata.fda.gov/drugsatfda_docs/labe
 1/2018/125164s078lbl.pdf. Last accessed on 2 Feb
 2021. 2018.

- 51. Recorman (Epoeitin Beta). Product Information Leaflet by Roche . Available on URL: https://www1.ndmctsgh.edu.tw/pharm/pic/medinsert/ 005REC03E.pdf. Last accessed on 02 Feb 2021. 2012.
- 52. Aranesp (darbepoetin alfa). Product information leaflet by Amgen. Available on URL: https://www.accessdata.fda.gov/drugsatfda_docs/labe l/2011/103951Orig1s5173_103951Orig1s5258lbl.pdf
 . Last accessed on 02 Feb 2021. 2011.
- 53. MIRCERA (methoxy polyethylene glycol-epoetin beta) injection Product information leaflet by Vifor Pharma. Avaialble on URL: https://www.accessdata.fda.gov/drugsatfda_docs/labe l/2018/125164s078lbl.pdf. Last accessed on 02 Feb 2021. 2018.
- 54. Fliser D ,et al. Early low-dose erythropoiesisstimulating agent therapy and progression of moderate chronic kidney disease: a randomized, placebo-controlled trial. Nephrology Dialysis Transplantation. 2017;32(2):279-87.